JOURNAL OF
MATHEMATICAL

PHYSICS

VOLUME 13, NUMBER 5

MAY 1972

On the Evaluation of the Multiplicity-Free Wigner Coefficients of U(n)*

E. Chacén,T Mikael Ciftan,{ and L. C. Biedenharn
Duke University, Duvham, Novih Cavolina 27706
(Received 30 June 1971)

An explicit algebraic expression [containing the minimal number (z — 1) sums] for the general reduced Wigner
coefficients associated with the multiplicity free Kronecker product [y -+ k,] X [p0 ... 0] of irreducible re-
presentations of U(n),is determined. The calculation employs a combined use of recursive relations derived
for the Wigner coefficients, and matrix elements (with respect to Gel'fand basis states) of a generator of U(n)
raised to an arbitrary power. We also give an alternative procedure using the techniques of the “pattern cal-
culus.” The method is illustrated first for the case of U(3) and then generalized to arbitrary U(n). It is found
that the results can be expressed succinctly in terms of a new algebraic function S,,, — thereby elucidating.the

structural details of the underlying algebra.

1. INTRODUCTION

The applications of a symmetry group in physics are
almost entirely subsumed under the reduction of the
Kronecker (direct) product of unitary irreducible
representations (irreps). This reduction forms the
well-known Clebsch~Gordan series (in the space of
irrep labels) and the explicit matrices (in the vector
spaces of the irreps) which effect this reduction are
termed Wigner coefficients, to accord with Wigner's
original derivation! of these coefficients (in 1931) for
SU(2).

When the group SU(3) became important in many
fields of physics, Moshingky? and later several
authors3—5 derived algebraic expressions for the
special SU(3) Wigner coefficients associated with the
multiplicity-free Kronecker product

[hih3hz] % [p 0 0] (1)

of irreps of U(3).6 Throughout this paper we shall
speak of U(n) and not distinguish SU{n) except as the
subset having 75 = 0. We shall use Young frames
[Ayhy + <+ h,] to denote the irreducible representa-
tions (IR) of the group U(rz). Multiplicity-free Wigner
coefficients are unique to within over-all phase. For
SU(3) there exists a canonical definition of the
geneval (not necessarily multiplicity-free) Wigner
coefficient, which is unique to within phase and
equivalence under the Weyl group (this is the meaning
we ascribe to “canonical”).

The methods employed in the derivations of the above
mentioned special SU(3) Wigner coefficients were
varied: in some cases the realization of the corres-
ponding states by boson operators and the evaluation
of a scalar product of boson polynomialsZ2;in other
cases, the solution of recursion relations.3 The re-

sults obtained are also of a varied degree of com-
plexity, ranging from expressions containing two sums
to expressions with six summations for the SU(3) re-
duced Wigner coefficient, also called isoscalar factor.
[It is known? that the U(n) Wigner coefficient can be
factorized into a product of a U(n — 1) Wigner coef-
ficient times a U(n) reduced Wigner coefficient (RWC).
(In SU(3) the RWC is called “isoscalar factor” corres-
ponding to isospin group (SU2) contained in SU3.) As

it is supposed that the analysis proceeds in succes-
sive steps, once we know the U(n — 1) Wigner coef-
ficients, it is the U(n) RWC which should next be
evaluated. |

In this paper we shall obtain an algebraic expression
for the U(3) RWC associated with the Kronecker pro-
duct in (1) which is comparable in simplicity to other
expressions hitherto published. Furthermore, the
present analysis gives rise to simple rules that make
the formula comprehensible. This clarification of
structural details and the resulting algorithm allows
one to readily generalize the results obtained for U(3)
to U(n); in fact,in Secs. 3 and 4 of the present paper,
we give algebraic expressions for the general Wigner
coefficients of U(n) associated with the Kronecker
product

[By ==* Ry ] X [pO -~ 0]

In a notation which is an adaptation of the usual SU(2)
notation to the case when we use Gel'fand labels for
the states, the coefficient we shall evaluate is

hy p 0 01k hy kg
g1 42 ; g 0 d1 4 ’
91 0 a1

hy  hy

@
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Since this expression denotes a complete U(3) Wigner
coefficient, the general U(3) RWC will be the quotient
of the coefficient in (2) by the U(2) Wigner coefficient

q1 q5 q 0 qs :>
q1 ’ 0 q1

\/(ql—q2+1>-<q'1—q'2>xq! )
=V (g —ap t Dilgp—ap)t IR

q,

3)

It greatly helps toward clarifying the content of our
expressions if we make use of the operator notation

M3 My3 M33 Iy,
_ _ Ti2
Mig Mag Mg 0
_ Mg
2 0

The symbol between the initial and final states de-
notes a “Wigner operator” which carries two patterns
sharing common IR labels [M,; 0 0]. The lower
pattern is the ordinary Gel'fand pattern, while the
upper one (written in inverted form) is formally iden-
tical to another Gel'fand pattern. The weight compo-

T I
M3 0 0 _5 | M 0 o
My, 0 ’ My, O
0 L Y

The operator

Y
My, O
0

is the U(2) Wigner operator, and the operator in
square brackets is the U(3) reduced Wigner operator.
If this U(3) Wigner operator is taken between maximal
initial and final U(2) state labels,theny = 0, 7, =
mlz, 77122 = mzz + Mlz. The condition Y = 0 elimi-
nates the summation.

A distinctive feature of our approach is that the coef-
ficient in (2) appears as a linear combination of coef-
ficients with ¢ = 0, these latter which have a very
simple (monomial) structure are easy to evaluate
either by a recursive process or by the arrow pattern
calculus5; we shall discuss both methods. To obtain
the Wigner coefficient (2) from the ¢ = 0 case, one
needs the matrix elements (ME) of powers of certain
generators of U(3); we shall again discuss two alter-
native methods to obtain these ME, one using the
Wigner—Eckart theorem, and the other employing the
pattern calculus rules. The detailed derivation of the
coefficient in (2) will be carried out in Sec. 2. It will
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discussed by Louck in his review paper.7 Ir this
notation the Wigner coefficient (2) is written as

hy hy hy . t . Ry hy hy
g1 4 PqOOO 91 93 )
qi 0 a1

where t = hy —hi, s—t=hy—hy, p—s =hz—h4,
or in more general notation

o

T

nents I'y;, 'y — I'y3,M; 3 — I'y, of the upper pattern
denote the changes that the operator effects upon the
initial state representation labels m; 5; furthermore
the changes that the Wigner operator produces upon
the initial U(2) and U(1) labels are obtained using the
projection

be seen that the analysis of Sec. 2 is generalizable to
U(n). In Sec. 4 we discuss this generalization and
show that the algebraic formula for the RWC asso-
ciated with the Kronecker product [a{h} ... k] %
[p0... 0) of IR of U(n) contains (z — 1) sums. In Sec.
3 we discuss the structure of those special coeffici-

ents in (2) which have ¢ = 0.

2. DERIVATION OF THE U(3) RWC

A very fruitful technique in the evaluation of Wigner
operators—ifor both practical as well as theoretical
purposes—is the method of embedding in larger uni-
tary groups; this general procedure has a long history
of success in both the Frobenius and the Young treat-
ment of the symmetric group. Similar methods were
first given by Louck® and by Brody, Moshinsky, and
Renero,® and also independently by Biedenharn, Gio-
vannini, and Louck.1? The latter paper showed in par-
ticular that the embedding of Ufr) in U(n2) is optimal
in two senses: (1) All other cases can be exhibited as
special cases, and (2) there exists a faclorizalion
lemma,explicitly involving the properties of lhe
canonical splitting of the multiplicity.

It follows from Refs. 9 and 10 that the Wigner coef-
ficient in (2) is identical to the scalar product
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/ ny o\ 0o\t Y \
/ Ry hy 0 o Ry R
(Of{mi Ry Of1p 0 Of |uy  hy gl O]
1 492 q 0 a1 42 /
\ a1 0 a4 /

V4
AR

stands for a state belonging to the symmetric IR
[@a+b+¢,0--- 0]of U(9), and classified by a sub~
group U*(3) X UX3) of U(9);the state being a Gel'fand

state
a b c \
x ¥ \

=/
with respect to transformations by the (upper) U¥(3)
group with generators Cr¥, and also a Gel'fand state

a b c
s 4 >
7

with respect to transformations by the (lower) U¥(3)
group with generators € . [For the time being we
set 15 = 0 in (4). There is no loss of generality in
doing this; at the end of this section we shall mention
how to obtain the general result with 225 = 0 from the
result of the case 25 = 0],

Explicit realizations of the U(3) X U(3) states, as well
as of the generators C#¥ (‘2 , in terms of boson crea-
tion and annihilation operators

aﬁ; ﬁﬁ b,v=1,2,3 (5
are well known.11 In particular we shall quote the
following result that is needed later:

0 0
0 o 0 0
p 0 ol=/ (—’3-:,1—‘?—!—@%3 p 0 ofl.
g 0 biat 0o o
0 0

Now, let us denote provisionally any three operators
like those appearing in the scalar product (4) by B4,
B,, B, respectively. Then,if £ is a U(3) generator,
we have the identity

(0|BY(£B,)*B410)
=(01B}BFL*B;310) — (01 (LB, )" BB, |0);

and iterating (g — 1) times this result we arrive at

(01BY(LB,)*B,]0)
=2 )@0leaB, By(E B [0). (1)

When we use this formula in Eq, (4), with the expres-
sion given in (6) substituted for the middle state, we

come to the conclusion that the scalar product in (4)
is equal to

(p>-1/2 s
q @ allg—a)!

( ny \1) 0 i
B, R 0 0
x{0[{s@3s (kY k% Ol tlp O 0O,
i 43 0 0
| a1 ) 0
h3
ny o hy
@I L hy hy hyilO}). (8)
41 Go
q1

The matrix elements (ME) of the generators of U(3)
with respect to Gel'fand states are well known.12
Using repeatedly these ME we can calculate the ME
of any power of a generator. This, however,is not a
very practical procedure; so we prefer to use the
fact!3 that

a (2k)!
e = \/ B+ T)—T+ B!

(@13)7‘+!z(@23) LN

T:k,k—'l,.. —k (9)

)

are the components of an SU{2) irreducible tensor of
rank %; using the Wigner-Eckart theorem we can cal-
culate its ME with respect to U(3) Gel'fand states, and
specialize the result to 7 = — k.

The techniques of the pattern calculus afford a very
economical derivation of the desired result for the
operator (€,4)%,

Consider the operator €, itself. Using the known
matrix elements one finds that

o\/ 0 0 0
/+\= 001 > (10)

where the two operators given correspond to the pat-
terns

T AL
R TR

with each operator giving U(3): U(2) and U(2): U(1)
contributions. The algebraic factors corresponding to
the patterns of the first operator are

J. Math. Phys., Vol, 13, No. 5, May 1972
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((1712 + 1 —=p13) gt 1 ~DPy3)p1g + 1 —p33)
(P12 + 1 —p35)
—_ 1/2
X _________(Pm pn)) , (12a)
(P12 — Pa2)

while those of the second operator are

((Pzz + 1 —p13)Pae + 1 —Pa3)(pgs + 1 —P33)
(P22 + 1 —P1p)
— 1/;
x P2z = P13) p“)) : (12b)
(P2 — P11)

Using the fact that the numerators14 of the two opera-
tors

CHACON, CIFTAN, BIEDENHARN

T(p12 —Pgz — B)

(14

(This and other similar results will be discussed in
more detail in a future paper.)

(D y-p,8)? is a sum of reciprocals of rational factors,
the sum being expressed in Eq. (14) as a monomial in
a closed algebraic form;it arises from the denomina-
tor contributions.14 Similarly,

arises from numerator contributions!4 and it is the

0 0 0 0 0 0 analog of the U(2) renormalized operators,14 the ME
A= 1 0 and 0 1 of which can be obtained directly by the use of the
0 0 arrow pattern calculus rules.
. By any of the two alternative methods, we find
commute, we find
' 0o o0 o h h
al ’ ’ ’ ’
((‘323)‘1 = %; m A= a—,B ﬁ Da—B,B’ o hl ' h2 hl h2
a r €yslhy By 0 =a!ZB“JGB h; A 0
(13) a9 gi+B  gy+a-p
where , ,
91 q;
DOL'B,B = [(p12 —p22)(p12 —p22 +a-— 2.6)]1/2 (15)
‘ J
with
o Vai—ap D —ap+2M—a+1)
? B} — B)!
\/(ha—qan(h'z—q'z)x(ha—q'z+1)! / 8!
X(‘I'1—CI'2+B‘01)! (@3 — hp)13) gy + 1)! @y —aq5—a+ p)! (16)
(CI'1-(I'2+1+5)!\/(h’1~qi—fﬁ)!(h§—q'2—a+B)!(h'l—q’z——a+B+1)! \/ 1 ’
(@h — hy, + B)l(gy + @ — B)1(gy + 1 + B)! (@1 — a3)!
31 hy
hy hy ky hy
-0
€3 |y hy Ryl =@— o) %} Ehy hy, hy , (17)
q qq q1—vy gs—qta+ty
a1 a1
with
B =\/(q1-—q2+1)(611—42+1+f1—27—a)x (@1 —a, — !
v yig —a—y)! (@ —d +1+g—0a—y)!
[ —a)! \/(hl—ql T g —dyta—a—y) (3 —gy+g +1—a—y)!
% (g5 —a)! (Q1—h2""}’)!(qz"h3—‘q+a+')’)!(q1-h3+1“—'}’)! (18)

(‘I1-qi—'¥)!

(ry —a )y —q5) ! (hy —a, + 1)1

‘/;qi—q2+q—a—y)!
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In formulas (16) and (18), as well as in all the basic
formulas in the rest of the paper, we can achieve a
great deal of simplicity in notation if we use two alge-
braic functions that will be defined now. Let (2 - - -
k,) be a set of Gel'fand labels of an IR of U(x), and let
@y -+ 4,,) be another set of Gel'fand labels of an IR
of U(m), with m = n or m = n — 1, these being the only
two cases that interest us. Furthermore, let us sup-
pose that the labels 2,4, obey the “betweenness”
relations: &, = ¢, = h,; for all s. Then make the
following definition:

Snm(hl e hn;ql e qm)
m k
0 (g —q, + E—s)
= n-1 n ’
J 0 @ —h+s—k—1)!

m=norn—1, (19)

As a particular case of this definition, notice that
[S,.(hs; 1)) is related to the dimension A (ky ... k)
of the IR (y --- k,) of U(n);in fact

n

By oehghy oo R = T

[S i<j=2

(hy— b+ — 1)

nn(

n
= kr=11 RiA, (hy - hy).  (20)
It will be found that all the basic results of this
paper can be expressed very neatly in terms of S,,,,
functions and their squares. This was the reason for
writing Eq. (16) and (18) in that peculiar way, as it is
easy to verify that each square root in those formulas
is an S3,, or S,,, function, and the rational part is an
[S22]2, s0 we can rewrite G, and E, as

8320045 95)552(@2585) S31(@%;91) Sz (ks a5)

B — AT gt ’ ’ re ot (21)
[S22@59912  Sp10a5941) S35k 47)
withg} =q} + 8, g5 =q, + o — 8 and
_ S22s;95)S22@s; 95) S21(as5 1) S35 (05 4s) (22)

v [522(qs;as)]2 321(073;61'1) Ssz(h’s;qs)

]

581
withg, =g, —7v, 4, =g,—q+ a + .

We shall next describe a rule by means of which one
can write very easily the different terms that occur
in the definition (19) of the S, functions. We shall
state the rule for the case n = 3, the generalization to
arbitrary » should be obvious.

Draw a row of n = 3 dots, and assign to each dot the
labels ky, kg, ks, respectively. Below this row of dots
draw a second row, of either m = 3 dots [case (a)] or
m = 2 dots [case (b)], and assign to them the labels
41,499,493 in case (a) or ¢,,¢, in case (b). Asitis
supposed that %, > g, > k., we shall draw the dots in
the second row in such a way that the set of labels
resemble a Gel'fand pattern,i.e., the dot associated
to g; should be drawn between the dots corresponding
to ; and ;. (See the two diagrams below.) Next,
draw an arrow from every dot

h, h, hy h, hy 113
q, ‘12 qa ql 12
() (b)
FIG.1.

in one row to every dot in the other row, the direction
of the arrow being such that the final dot is always to
the right of the initial dot. To each arrow associate a
factorial ({ — h + €)!, where ¢ is the label at the tail
of the arrow, % is the label at the head of the arrow,
and € is the number of dots, in any single row, which
are located to the right of the initial dot and to the
left of the final dot. Multiply together all these fac-
torials and distribute them in a fraction, with arrows
going downwards giving numerator contributions, and
arrows going upwards giving denominator contribu-
tions. Finally, take the positive square root of the
fraction.

Following this rule one can easily verify that with
Fig.1(a) is associated the function

\/(hl—ql)!(hl—qz + D)1y — g + 2) 1y — go) (g — a3 + 1)1 (kg — q3)!
(ql _hz)!(ql —h3 + 1)!(612—173)!

and with Fig.1(b) is associated the function

/(h1 — 1) (kg — g5 + 1)1(hy — g5)!
(@y —hy)l(gy — hy + 1) 1(gy — h3)!

which are precisely S5, (k; g,) and S, (h;
ing to definition (19).

q,) accord-

Substituting the last results in (8) we see that the
scalar product in (4) is equal to

P\ ~1/2 e
<q> f%;r( " Gs By

—
hy il 0 T
ry Ry 0 0
x { 0] Ry hy 0 p 0 0f,
g1t gs+a—5 0 0
41 0
hy
hy hy
hyq kg kg 0
gi—y dg—qtaty
q1 (23)
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But now the scalar product in (23) is nothing else but
a Wigner coefficient of type

(24)

In the next section we shall obtain the algebraic ex-
pression of the Wigner coefficient (24);the result
appears in Eq. (48). From this result we see that this
type of coefficients are independent of the value of 74,

J

<h'1 hy Ry poa”h1 hy, h
a1 q5 ! qg 0 q,

CHACON, CIFTAN, BIEDENHARN

and furthermore they are proportional to 6m,m},
dmymy. This means that in Eq. (23) we have

6‘11'7-q'1+ﬂ X Oqz_qﬂm ajra-Bs or equivalently:

5‘11"42 .q;+qé+qb y.a5-aj-B and the last Kronecker delta

allows us to eliminate the summation over y leaving
only two sums in (23).

Hence, substituting Eq. (16), (18), and (48) into Eq. (23),
dividing by the SU(2) coefficient in (3) in order to have
the U(3) RWC, and subtracting hj from every h, k!,
45, 45 in order to have the result valid for 25 = 0, we
arrive at the following algebraic expression for the
special U(3) RWC we are discussing,

3
q2 > _5h1+h2+h3, hi+h2'+hé+paql+q2,qi+qz’+q

XV(p—aq)gy —ap + 1)y — hy + 1)(hy — kg + 2)(hy — by + 1)

\/(41—41)!(q2—q’2)!(q1—q’2 + 1)1

gy —a)!

X

\/ﬁzl—h’l)!(hz—h’z)!(hs Zhy) Wy — By + 1)1(hy — kg + 2)1(ky — B + 1)1
(W} — hp)1(hy — hg)T(RY — g + 1)1

(hy —q)1(hy — g3)1 (k] — g5 + 1)!

o a1 — hy)ay — k3)1@) — kg + 1)1
(hy — g ) (hy —q) (kg — gy + 1)1 052,
(q]_ - hg)!(qz - h3)!(q1 _h3 + 1)t

2 (=)Pr*Pqy —qh + py — Py + 1)

x (‘Ii —hy +p1)!(Qi_h§ +1+p)g} — 4y +p)(hy —aq) — P!
P1lgL —as + 1+ p IR, — gy — D), —a) — Py — kg + py) 1@y —hg + 1 + P!

x (Qi —q3 —Pz)!(qlz'_hé +Pz)!(h1_q'2 + 1—1)2)!(}12—4’2—‘1’2)!
Pty —ah + 1 —py)1 s — gy —py)1a —qq + g7 —D)1 @) —ay + g+ 1 —Dy)Has — By + py)!

S33(ks; h)S35(hg; g¢)

= OnehyongimghsOo rapairayra V(p — @)1 S55(00590)S22s; 42)

S33(h; B{)S35(hs; q5)

X 2 (__ )Pl"f’a( ‘?32(hs’qs, + ps)szz(qsl + psyqé + ps) ) 2‘ (25)
b0, Saglhs; s + p5)S22(05 + P53 800522055 95 + Ps)
r
Y
3. THE MONOMIAL WIGNER COEFFICIENT p0000 Ry ... h, 40 pO...0 | hy... B, 1k,
0 mi...mly 5 0...0 | my.o..m, (26)
¥y ees ¥pg 0...0 Ty eee Vyo |’
max max max

To complete the proof of the validity of formula (25)
for the U(3) RWC, we have yet to obtain the value of
the special coefficient given in Eq. (24). As the deri-
vation-of this type of coefficients for U(n) is just as
easy as for U(3), we shall discuss the general case,
i.e., we shall obtain an algebraic expression for the
Uln) Wigner coefficient,

J. Math. Phys., Vol. 13, No. 5, May 1972

where the word “max” means that the corresponding
Gel'fand state is of highest weight (maximal) in

U — 2).

To begin with, if we factorize the coefficient (26) into
a product [U{n — 1) Wigner coeff] X [U@)RWC], the
first factor is
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myooomhy 0. 0| my ... m, 1 m§nz NGy, my — 1){ymy — 155pm | JM)
7’1 *eu 7”‘_2 0 cue 0 lrl v Tn_2 = 131 6m mi N . . 1 (2)
o o o s s™% + N(jg, My — 1)(iymy3iamy — LIIMIY, S 055,
27 (29p)

and as the RWC does not depend on 7, we see that the
whole coefficient (26) is independent of .

The derivation of the coefficient (26) will be done in
two steps. In the first step, we shall express (26) as a
multiple of a Wigner coefficient of the same type as
{26) but specializedtom  =m; =h!, s=1,2, ...,

n — 1; the proportionality factor will be found by solv-
ing a recursion formula for Wigner coefficients, In
the second step, the specialized coefficient that
appeared in the first step, will be determined by com-
bining some results of Refs. 9 and 10.

The method to obtain recursion relations for Wigner
coefficients is well known!?; let us briefly recall in
what it consists, taking the case of SU(2) for the sake
of simplicity. One considers

V2 = 22 <.7'1m1552m2!JM>¢’(1) U 28)

mym S PL
and apply on it a generator of SU(2), for instance J, =
JO + J{2, to obtain

irde PP @) ;W
J W2 = m§l2(jlml,}zmzlJM){¢j2sz+ Y m,

1 @,
+ ‘l/jlml']-l- Y }~

Ty

(29)
But it is known that

TV = NOMEE,
where N(JM) is an algebraic factor whose precise

value does not concern us for the moment. So the left-
hand side of (29) becomes

T AN Gymysdams) M+ DY, 42,

my my

(29a)

and the right-hand side of (29) becomes, after changes
of dummy indices,
]

n-1 my ees My
2N (h,m,7,) 70 4+ 0
T=1

max

14 .
ryi... 1'?2_2 ;

max

?
my — 8 My — g m

n-1
= 21 N (hl,m{ — 8,7 vy
1=

max
mi. .m;_l q-—-lO...O
+}\T1(i};q_~]_,»y-) yi...ry;_z; 70+« 0
max maXx

[We have suppressed in (32) all the U{x) labels of the
Wigner coefficients, namely: () --- &, _,0), (50 --- 0)
and {(fy +++ h,_h,).]

Now let us select a fixed number: 2, 1 <« k< n —1,
When we specialize formula (32) to the case g = 7 = 0,

¥

)
¥Yg ¥

The coefficient of ‘1’§11)ml
to the coefficient of the same term in (29b), and this
equality gives the desired recursion formula for
Wigner coefficients.

gb(].zz)mz in (29a) must be equal

Let us now derive a recursion formula for Wigner
coefficients of U{n). From the-knownl2 ME of the
generator €, _;, of U(n) with respect to U(n) Gel'fand
states, we have

hyso-h,y R

"11 * 7nn_1 ﬂi;l (k )
= N 7,
@’n—ln ’r}_ . rrn-Z e’} T 5278
max
hy by oo b, 4 h,
X m1+6‘rl "y +672“' M1 +6’rn~1
¥yt ¥n-2
max
(30)

with

N (b, m, 7,)

n n-2
-1 (hy—m +7—5) I (r,—m +7—5~1)
s=1

s=1
= n-1 *
Hl (mg—m, +17—s5—1)(mg—m, +7—3)
s=
s#t (31)

From here, by a method entirely similar to that des-
cribed above for the case of SU(2), we obtain the fol-
lowing recursion formula for the particular Wigner
coefficients of U(n) that we are considering in this
paper:

q0--- 0 my + 8y m2+612"'mn—1+5'rn—1

?‘2 "o 771*2
max
;_1._61_”_1 qO...O 1/;11...7,‘4'?3‘:L
- ; v -+ 0 7‘1‘.‘7/71-2
max max
my My-3 (32)
7y Vp-2
max

i
m{=mg+ 8,, s=1,2,-.+,n—1,then all but two
terms in (32) vanish because the Wigner coefficients
in them do not meet the condition expressed on the
right side of (27). The only two surviving terms are
the term with 7 = % on the left of (32), and the term
with 7 = k on the right of (32), which give
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Nk(hs’ ms,vs)

i . . . h';t-l 0 PO s 0
XA\Mmy eeem ymy+1imgyeom, 13 0-4-0
max max
hl . . ‘ hn-l h’n

X{my e my gy my t1mg g e my

max

=Nk(hs’,ms,7’s)
By, . . . R 0 pO--- 0

X{myeermy ymym+--m,_; 0...0
max max
hl . . . hﬂ_l hn

K| My ves Mpg My Myyy »oe My (33)

max

In writing (33) we have availed ourselves of the inde-
!
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pendence of the coefficients (26) with respect to » s Lo
choose for the r = 7/ in the Wigner coefficients,
values such that all states involved are maximal in
Un — 1)

Formula (33) is clearly a recursion relation for the
index m,, which allows one to express the Wigner co-
efficient with arbitrary m, as a multiple of the Wigner
coefficient with m, = h; and same values of the other
m,, s # k, Noticing that, according to (31),

Nyhg,mg,7)
Nk(h'S? ms,"'s)

k n
_ sfjl (hg —m, + k—5s) s:I;lu (m,—h, + s—k)
- % n

slz'll (B, —my, + k—s) s:fgd (m,—h, + s—k)

(34)

(where we have split IT;_; in the form indicated above
in order to have all factors positive), we obtain from
(33), by iteration, the following result;

no. . . W0 p0en0 | By . .k h,
My vee Myy Py Mpyq ooe Moy Qeee O X My o My g My My g voe My
max max max
ki Bai O PO -0 | By . Bpy by
=Fp{my e My by My oo Myy 5 0oee 0 fmy oee my g By My q oee My (35)

max

o 3

n
- — §)1
1(hs m, +k s).szl‘;l*1

@
i

k n
(hy —hg+s—k—DITL (b, —hy + k=) T (m, — by + s—k—1)!

— h — !
[ =R k=) T

e

@«
)

This result is valid for any 4,k =1,2,...,7n — 1;s0
by combination of the n — 1 cases we arrive at
Ry ...h, 70 p0-e-0 ) by erh, b,
Myoee My q; Q+¢c 0 my cee m, 4
max max max
Byves B, 0p0 o2 0| By by 1 b,

Fo{ hy+eeh, ;0.0 hrl...hr_lb

max max max

37

Let us note that according to the definition of the
S,up-1 (h; m) given in Sec.II,

n-1 2
0 (hy—m, +k—s)!
k=1 s=1
Spn1gimg) = ol
0 0O (m,—h,+s—k—1)1
k=1l s=k+1

(38)
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k n
(m, —hg + s—k-—l)!sl;ll(h’s—mk +k——s)!s=l;l+1(h,;—- b, +s—k—1)1

(36)

I

Then, if we denote the four products that appear in the
numerator of (36) by Ny (k), Ny(k), N3(k),and N, () in
the order in which they are written, and similarly de-
note the four products in the denominator of (36) by
D, (R),Dy(k), D5 (%), and D 4(k), we have

"ﬁl Ny (k)
k=1 Dy (k)

= snn-—l(hs; ms)’

n-1 Dl(k) _s

(hg;hy + -« hyq)s

nn-1

&
=

—
~

o

n-1 N, (k)

3 ’ ’ ’
=S, _J(hy ~e B._,0;Ry - R!_)
k:lD4(k) nn 1(1 -1V "1 n-1/

"1 Dy (k)
k=1 N,y (R)

= Snn—l(h'i st h;—lo; ms): (39)

which shows that the algebraic factor on the right-
hand side of (37) is
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nl_-ll F. = Snn—l(hl cee hn;ml .o
= [ R
k=1 snn—l(hl o

X Snn—l(hi Tt h;l-lo;hi tt h;t—l)
Snn—l(hl ot h’n;hi tee h’;l-l)

It only remains to determine the last Wigner coef-
ficient in (37). This can be done by means of the fol-
lowing reasoning. In Ref. 8 it has been shown that the
Wigner coefficient on the right-hand side of (37) is
equal to the scalar product

) mn-l)

by, 10;my * My, )

. (40)

max } max \T
Ry «e- R4 0---0
0 ||nyhy---n, 10 [p0---0
Pkl 0---0
max max
max
hy e hyy

X hlhz ceshy g hn 0}, (41)
By« R,y
max
of Un2) D U(n) X U(n) states, of the type defined in
Sec.II. But according to the “factorization lemma?” of

Ref. (9), the scalar product (41) is, at the same time,
equal to

f N[y - - By )
M([hy - hy_ OY([PO - -+ 0])
By-+-h,_40 pO -+ 0 hy o -h, h\2
X hi,.,h;_l; 0---0 hll"'h;z—l ,
max max max

(42)

where M([h,]) is the so called? measure of the highest
weight tableau, and is given by

M (k, +n—s)!
ch, ) =2 . (43)
U (h,—h+s—7)

r<s

Hence we deduce that

By -+~ h, 10 pO---0|hy--ch,h,
By -+ hli_y 0---0 hy -«- k)4
max max max

_ /m([hi ce by ODM([PO - - 0))
) MRy - hy]) )

We shall write the Wigner coefficient (44) in terms of
the S,,, functions defined in Sec. 2. With this purpose
in mind, let us note the following relations among the
S,,, and the measure of the highest weight tableau
given in (43):

(44)

[/ﬂ([hl . hn])]l/z
snn(hl Tt hn; h’l e h;t—lo)
snn—l hl e hn;hi‘ o h;t—l)snn(hs;hs)’

(45)

(M([hy -« k,10])]7272

=S, 1y v by 10hy -- k). (46)

In formula (45) the k', are arbitrary, except for the
fact that they must obey the betweenness relations
kg, = k) > h,,. Note incidentally,that S, (h; k) is
related to the dimension A, (hy + -+ h,) of the IR

[Ry « -+ R,] of Uln);in fact

n
[Spnbg;hJ]2 = =k +§ —1)
-1
= 8,0y - 1) T k1L (47)

Using the previous formulas and (40) to express all
the right-hand side of (37) in terms of S,,,, we have
the final result:

|
Ry -++h, 10 pO---0| hy---h, 4h,
mi...mn'_l 5 Q... 0 ml"'mn-l
max max max
5 , 5 ‘/'27_’ Snn—l(hl T hn;ml tt mn—l)snn(hs;hs) (48)
mym LA * ’ ’ ’ ’ :
o "n-1 "o Snn—l(hl e hn—lo; my ccc mn—l)snn(hl et hn; hl e hn—lo)
{
Specializing to n = 3, we have the result used in Sec. 0
2 to obtain the algebraic expression (25) of the U(3) 0 0
RWC.
— /M-1/2
One may also obtain this same result from the pattern Blp 0 0 =/"l/
calculus. The boson polynomial, 0 o
0 0
0 o r r
Blp 0 0]=(ad)? xZ}p 0 O\ /p O 0/711/2 (49)
0 o T 0 o0 0 o
0 0 0

has two different formulations, using the factorization
lemma. The first formulation is

(using the lemma directly) and the second formulation
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[obtained by applying the lemma to a3 itself which is

is y y

1 0 o0/1 0 O

B 0) = Mm-1sz
(#00) 0 0 /N o
0 0

nise

(50)

One then uses the pattern calculus rules5.14 to obtain
an explicit monomial expression for the Wigner coef-
ficient

Let us note parenthetically the correspondences

1 0 0
Y171 0 yp, =1 0 y3 =0 0
J J
1 0 0
1 0 1 0 0 o
1 0 o0 1 0 0 1 0 0
0 0 0 o 0 o0
0 0 0

b b b )
el —— e .‘/74_\7.
Since these operators have, with respect to each

other, opposing arrows (indicating associated noncom-
mutativity) in the U(3) “denominator” only, we find

r a

0 o ! a+p 0

0 oalBly! 0 0
0

where y = p — o — B, and the U(3) monomial “deno-
minator” D ,,(33) is known explicitly. (This and other
similar results will be discussed in more detail in a
future paper.)

4. THE U(n) CASE

All the steps followed in the last two sections for the
derivation of the U(3) RWC can be repeated in the
derivation of the U(n) RWC associated with the
Kronecker product {r} -+- k.] X [p0 ... 0] of IR of
U(n). We proceed now to give the results of this case.
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As the analysis is so similar to that of the U(3) case,
we shall skip all the unessential details.

We first evaluate the Wigner coefficient

ik ok O PO -0 | hihy -+ b, k,
q'l...q;_l ; q0+--0 g195 *** 4,4
q’l-..q;_z 0.0 qi-..q;_z

max max max
h’1 ...h;_l 0.0
[, | [t e g0} [p0er00
- q:’l...q;_l q0 ... 0
qi...q;_z 0...0
max max
max
By By
hihy,oe-h . h
% 1%2 n-1"n o} . (53)
U/ PEEER
qi...q;_z
max

The U(n) RWC is then the quotient of the coefficient
(53) by the U(n — 1) Wigner coefficient
qi...q;_zq;_l qO---O
qi...q;_z ;O--.o
max

q1 " Gy-2 9,1
gy 4y )

max max

(54)
whose algebraic expression was obtained in Sec. 3.
The result is given by Eq. (48) making the appropriate
changes; in particular, we have to subtract g,,_, from
every ¢ and ¢, but noticing that for any fixed num-
ber ¢,

snm(hl—a""’hn—a;ql_a7"';qm—'a)

Esnm(hl?"'yhn;qlw";qm)y (55)
we find that the Uz — 1) Wigner coefficient in Eq. (54)
has the value

F—! sn—ln—Z(qs,;.qi; tt qiz-z)sn—l n—1(qs;q,s). (56)
Sn—ln—z (qs’ q1°°" 'qn'z)sn-l n-l(qs; qs)

For the middle state in (53) we have an expression
similar to (6), namely

max max
0...0 0---0
—ag)t
p0 ... 0} = LP_'_‘”_ @y ) |PO-c0] (57)
g0 +++ 0 plgl 0:--0Q
Q¢+ 0 max
max

and using formula (7) again, we obtain this expression
for the Wigner coefficient in (53):
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’ max . max
e b || max |1 oy
a1z o (=) Wiy -+ By O 07 01 e |hyhy vty i b
() > ——0 *@%—1,1 . } X |[po---0] %, |72 n-1 "n o) .
q a al(g—oa)l qi 9y 0.0 4y dpy (58)
4y " dp-p max a4 qh g
L max J max

In the appendix we shall prove that

hl v hn—l hn

gy qdy- S, 1, +p.g. + S, 1 ,- ;
ei_ln 1 n-1 =k| Z} n-1n ]_(qs ps,qs ps) n 1nz],(qs,qs)
Yy V-2 P1*Pn-a [Sp-11-10s +Pga5)]
max (p1+...+pn_l:k)
hl e . s hn—l hn
Spa n—z(qs + ps;rs)snn—l(hs;qs) g1+ Py Gy 1t Ppa
X (59)
Sn—l n—z(qs;'rs)snn—l(hs;qs + ps) Yy %, 5
max
and by Hermitian conjugation we deduce from here that
hy +oe by o b,
ek gy - Gy — Bl E sn—l n—l(qs;qs)sn—l n—l(qs —PS;QS—PS)
nn-1 (SARRA Py Py [Sn—l n—l(qs;qs_ps)]z
max (py*etppyy=R)
hl vt hn—l hn
Sp-1 n—Z(qS;TS)Snn-l(hs;qS—ps) 41— P1 """ dp-1 7 Pr-1 60
Sn—ln-z(qs _—ps;rs)snn—l(hs;qs) 7’1 ct e 7’n_2 ) ( )
max

Substitution of the last two results into Eq. (58) leads us to the conclusion that the Wigner coefficient in (53) is
equal to

- . , max ,
<p) 1/2 By «es R, 4 ki« hyq
q e e, 0...0
ap...pEo...o (=) hihy =~ b, 1 O hihg e hyy by
1 P9 % 0 , , po.--0 0
(pl+...+pn_1=a) ql +p1 '..qn—l -|-pn_1 ql_ol “'qn—l—gn—l
€o+-0vo, _1=q-a) , , 0.--0 , ,
q1 °** 9n-2 91 **" dn-2
max
max max
X Sn—l n—l(qs;qs)sn—l n—l(qs — 0595 — 0-s)Sn-l ri-z(qs; qi tre q;t—z)‘sn n-1(hs; qs — Us)
[sn—l n—l(qs;qs - Os)]28n~1 n-z(qs - 0s;q’]. e q;-z)sn n—l(hs;qs)
X Sn—l n—l(q; + Ps; q’s + ps)sn—l n—l(qls; q’s)sn—l n—z(qls + Ps;CIi U q;t—z)snn—l(hi tte h';z—lo; q;) (61)
[Sn—l n-l(q’s + ps;qts)]zsn—l n-2(q;; ‘1'1 tre q;z—z)sn n—1(hi ot h;;-j_o;q,s + ps)
—
Now the ME appearing on (61) is nothing else but the Kronecker deltasto get rid of all the summations over
particular U(r) Wigner coefficient evaluated in Sec. o in (61), then use Ba pyweerp, 4 to eliminate the sum-
3 and given in Eq.(48). [Recall that it was shown mation over o, and the last Kronecker delta then be-
that this coefficient is independent of the U(n — 2) COMES B, 71eresyr ven
labels.] When we substitute the value of this coef- R S
ficient into Eq. (61), it brings in (# — 1) Kronecker Following the mentlon_eq steps, dividing (61) by the
deltas: =1 _ - U@ — 1) Wigner coefficient in (56), and furthermore
eltas: 6_,,, 4 o, S=12,...,7 1. The two con .
ditions o4 S TE o Gt O g —a subtracting 4, from every k', k¢, q%,and ¢, we have
f1 Paot = %5 01 71 =9~ ® 1o final result for the U({n) RWC associated with the
are equivalent to multiplication of (61) by 6“-P1+""Pn-1’ Kronecker product [ - -+ k] X [$0 +- - 0] of IR of
8 .oy s, - Hence we can use the first (2 — 1) U n): "
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<h{l.“' ;t—lh;t' p0 .-+ 0 “ hl..'hn-lhn>
qi...q;_l 4 qo...o 91" qpy

= bh;+"'+h;t+p'hl+'“+hn6qfl“'.*q;l—l"q'ql“'qu-l
% (P — q)! Snn(h's; hs)sn n-1(h’s; q;)
Snu(hs;h’s)sn n—l(hs;qs)
X Sn-l n—l(qs; q,s)sn-l n—l(q’s; q’s)

% Z) (_)Pl*’""‘ﬁn-l
1 Py

Xl: snn-l(hs;as)sn—l n—l(‘}-s;as) ] 2
Snn—l(h’s; qs)sn-l n—l(qs; qs)sn-l n-l(qs; q,s

)
(62)
withg, =¢, +ps, s=1,2,...,n— 1,

5. COMMENTS

We have derived in this paper an explicit algebraic
formula [Eq. (62)] for the reduced Wigner coefficients
involved in the Kronecker product of IR of U(n):

[hll...h;t]x[po...o].

It should be noted that this is the most general multi-
plicity-free Kronecker product on U{r), so the case we
have analyzed is the only one in which the Wigner co-
efficients ave uniquely defined (except for a phase
factor) by the group itself. In the case of U(3) there
exists also a canonical definition of Wigner coef-
ficients10 even for general (nonmultiplicity-free)
Kronecker products;to our knowledge this is the only
case in which such an extension has been achieved.

It has been brought to our attention that a result

equivalent to our formula (62) was obtained earlier

by Jucys.162 The analysis of Jueys is based on pro-
4

perties of the symmetric group S(#), and his result is
expressed in terms of functions over the symmetric
group; whereas our result appears in terms of the
functions S, ,,, introduced in the present paper, which
are expressed directly in terms of the quantum
labels of the initial and final Gel'fand states.

The authors of this paper want to thank the referee
for having pointed out to them Ref. 16b. In that paper
results identical to our equations (48), (59), and (62)
are obtained by methods slightly different to those
followed by us.
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APPENDIX

In this appendix we shall give the proof of Eq. (59) in
the text, concerning the ME of a power of the U(n)
generator €, _; , with respect to U{r) Gel'fand States.

Using the Gel'fand—-Zetlin results!2 for the ME of
€, _1,, We have

N

n n~2
\/—sl'__ll (hg—q, +p, + T—35) sl;ll re—q,+p,+7—5-—1)

4 n-1
\/Sr'—‘!l (qs —qr + p1 -_ps +7—5— 1)(qs_q1—+pf_ps+‘r—s)

S#T

In the Gel'fand states above, h, ¢, and 7_ are a gene-
ric designation for the IR labels of Uln), Un — 1), and
U(n — 2), respectively; and in order to obtain non-
vanishing results, the nonnegative integers p, must
satisfy the condition12

n-1

2 py=Fk+1. (A3)
s=1

Equation (Al) is a recursion formula for the ME of
@%_,,; we shall obtain the solution of this recursion
by the induction method. We make the following con-
jecture:

hs hs
’
qs qs 5
n-1n T Vgiteeerqp tRag ety y
7s ¥s
max max
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hs hs
qs ek+1 qs_ps
7 n-1n 7
max max
hs hs
n-1
q q,—p,+ 6
=D N S ern, | T @A
=1 ’}’s 7’5
max max
with
v (A2)
[
% Bi Sp-12-10594)8, 1 n-l(q;';q's)
[Sn_1-,,_1(qs;q's)]2
X Sn—l n—z(qs;’rs)snn—l(hs;q’s); (A4)

sn—l n—2(qts; Ts)snn—l(hs; qs)

then substitute this (with ¢’, = ¢, — ps + 6,;) on the
rhs of (Al) and show that, after some simplifications,
what is obtained for the rhs of (Al) is a formula like
the rhs of (A4) but with (¢ + 1) instead of &, and

g, = g4 — p,. This proves that the “ansatz” (A4)
satisfies the recursion formula (Al), and since the
ansatz is true for k = 0, it will be true in general.
[The definition of the S,,, functions in (A4) was given
in Sec. 2].

Let us proceed to implement the above described
steps. When we substitute (A4) with ¢, =g, —ps +
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8¢ into the rhs of (Al), there will appear some S, arguments. We can get rid of this § ¢ by a method
functions containing a Kronecker delta 6, in f;heir illustrated by the following example:

n-1 . 1/2
sn—ln—l(qs _pS + 6'rs;qs —ps + 61‘3) = (Ej (qz _q] + p] —pi + 51-1', s 61] +.7 - Z))
n-1 =" 1/2
:( i3 @;i—a;+pj—p;+j—0) Il @s—ar +pr—ps + T—-s—l))
i, jrr S#T
n-1 . n-~1 /s
55 (@, —aq; +p; —py+j—1i) szl{lw) Gs—q, +p,—ps+7—5—1)
= n-1
I gs—4; +pr—pPs+ 7 —8)
S#T
n-1
I;l ) (qs“qr+pr'-ps+ T—s—1) 1/2
=1(s#
= Sn-l nal(qs —Psyds— Ps) o s,:l . (A5)
N @s—a,tpr—ps+7—5)
S#T
By a similar method, we obtain
[Sn-l n—l(qs;qs — P + 615)1-2
T n-1
= [Sn1n10@3as =02 1L (g5 —a, +p, +7—8) N @, —qs—p, +5—7) (a8)
{Sn-l ,,_z(qs —ps+ 6?85?’3)]—1
-1 n-2 -1/2
=[S, 1n2(@s—ps7 )]t ( n(y—q, +p, +7—-s—-1010 (g, —r;—p,—7+s+ 1)) (AT)
§= §=T
T n —1/2
Snn—l(hs;qs —ps tO0)= S,,q(h;q,— ps)<s§l(hs —q,tp, t 1~ 3)33_}‘1(‘17 —hg—p,—7+ s)) . (A8)
We substitute all the previous results on the rhs of (A1) and obtain, after several cancellations
ths (AL) = k1 Sptn1s306)m-17-10s —Ps;8s — PISp1n2@s;70un1(hs;qs —Pg)
{Sn—l nvl(‘?s5‘?s - ps)}zsn—l n—2(qs — Ps; fs)snml(hs;qs)
n-1 — —
x$p, M —Ms=dr T 8] (a9)
TSl @ —a, PP T —8)
|
Now, let us write g, — p, — s = X ;then we see that Bk 1
the last sum in (A9) is equal to 2 N — (Al11)
s=1 7=1 (X, —X)
n-1 n-1 p r¥s
o, T (14 L
r=1 s=1 (X — X ) . H 17
s#r s T and it has been shown by Louck and Biedenharn!? that
n-1 n-1 this sum vanishes identically for # > 2. So in (A10)
=73, » P P; v Py O 1 only the term £ = 1 is different from zero, and this is
R=liyiy. =1 12 iy Sy (X"‘““___ X,)’ equaltop; +--- +p,; =k+ 1, according to (A3).
(33 <ig<e<iy) wtv TR This factor (¢ + 1) then converts the k! in (A9) into
(A10) {¢ + 1}!, and then the rhs of (Al) agrees with the con-
where y, v are numbers in the set {iy, iy, ... 0.} If jecture (A4) but with % shifted to (¢ + 1), and with

we relabel the indices i — s, then the sum over v in
(A10) becomes

g’ = 45— ps. As mentioned before, this then shows
that the conjecture {A4) is true in general.
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The propagation of a randomized electromagnetic field in a uniform medium is considered and expressions
are derived for the autocorrelation and spectrum of intensity fluctuations in terms of the fourth-order

coherence function on the initial plane.

INTRODUC TION

A variety of phenomena of current interest involve
the propagation through uniform media of fields
which have been randomized by previous passage
through stochastic regions. Particular examples in-
clude the radio-astronomical observations of the
solar plasma and the contribution of the turbulent
upper layers of the atmosphere to the twinkling of
starlight. A striking example of the complexity of the
phenomenon may sometimes be observed on the bot-
tom of a swimming pool when the surface is lightly
rippled; at both the deep and shallow ends the light on
the floor of the pool is uniform, but in the center, rip-
pling bands of light and shadow are observed. This
phenomena and others may be crudely understood on
a ray basis, when it is recognized that even small
phase variations introduced by the stochastic ele-
ment are converted into intensity fluctuations during
passage through the uniform medium by focusing.
This is the principle used in shadowgraph photography
of turbulent (and uniform) flows.

Although the ray-optical theory has been well known,
a general electromagnetic solution using the Helm-
holtz—-Kirchhoff integral has been lacking. The diffi-
culty has been that eighth-order integrations are
involved. In this paper, we employ a transformation
derived in a previous paper by Torrieri and Taylor!?
to reduce the integrals to lower orders. Compact
general expressions are obtained for the autocorre-
lation and spectrum of intensity fluctuations in terms
of the fourth-order coherence function on the initial
plane. From these general expressions the restric-
ted formulas previously obtained by Mercier,? Sal-
peter,3 and Jokipii4 for various special cases are
readily deduced.

THEORY
We consider the propagation of a wave ¥ (r), obeying
the scalar wave equation

(V2 + k2)(r) = 0,

where as usual k2 = ek% = e(w/c)2. It is assumed
that boundary values are given over the z = 0 plane.
It has been shown! that the Helmholtz— Kirchhoff
integral reduces in this case to the form
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v = =L [fue) Llas, z>0,

where R = |r — r’| and the integration is over the
plane 2’ = 0. We use Eq. (1) to obtain the following
expression for the fourth-order coherence function
M(r, 15, 13, 1,) = W (o WH (T, W (x3¥*(r,)) in the space
z > 0 in terms of the fourth-order coherence on the
boundary plane:

Miey 71 = (B 5o o o Sy Sy asi -
o *P1 =By * Ry~ Ry)

RRRR,
We shall assume that M is stationary over the z = 0

plane: It may be written as a function of the differen-
ces between coordinates. Thus

2

xdSyM(r{,r;, 15, 1)

M(l‘i, rzly I'é, 1'4) = M()(x;{ - x2’; . ,yé - yi)

= Mo(giy “s ey gé) = Mo(g’)’ (3)
where
Hexi-x3 E=x-x, §=x-y
£ =9y ~Vg & =Vg-33, E=vi-3; @

and &’ is a vector in 6-space. It should be noted that
the differences x, — x; andy; — ¥{ can be expressed
in terms of the other differences and have not been
included explicitly and that we have attached a zero
subscript to M as a reminder that this indicates the
value over the z = 0 plane. We introduce the sixfold
fourier transform

M@ = () d emplins 8 Mipt), )

where k%’ v ,k§6 are the spatial frequencies corres-
ponding to &, ..., & anddk, = dkgl- . 'dkie' The inte-
gration is sixfold, as indicated by the numeral in
parentheses and each integral is taken from — «to

+ o, We employ this convention throughout unless
otherwise indicated. Substituting Eq. (5) into Eq. (2)
we obtain upon exchanging order of integration

1\ 10 (©® 3 5
M(rl,rz,rs,r4):<2—77> f dkgMO(kﬁ)a—z_l"'ééjl
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f(s) exp[]k‘ £ +jkR, — R, + Ry ~ R,)]

RiRol5Ry
X dxi e dy . (6)

Expressing the £/ in terms of x5,/ and regrouping
1\6
M(ry, 1y, 15, 1,) = (-2?> dk Mo(kg) < T(ry;;k, ,k§>
) (0 T*(ryk, — )
822 29 §1
(L Tagk, b k)~a~-T('rkk
9z, 37 £, g 3z 45 g

(7)
where by definition

1 @
T(r;; ko i) = dx/dy;'

m>En = 2
exp[j(kgmxz.' + & ¥/ + EkR)]
X = - . (8

1

Torrieri and Taylor! evaluated T'(r;; k, , &, ) using
arepresentation of a spherical wave as a sum 3f ele-
mentary cylindrical waves. The result leads directly
to the formula

G

0z; Tlos ke, ke ) =~ eXp{j[kimx" TR

- k2 — k3 ~ k3 )V} O

Using Eq. (9), we obtain from Eq. (7)
M(r;, 1, 15,1,) = (21?> 6 f(e)dkgl\zo(kg)

X exp(j[kglx1 + ko~ 2, (k2 — k§21 _ kgi)l/z]

A A e L

— 25[k2 — (kgl — kgz)z - (k§4 - kgs)z]llz}

+ g, — kg ey + (kg — By )3,

a Zg[k2 a (kgs - k§2)2 - (kéé - k§5)2]1/2}

_ j[k§3x4 + k55y4 - z4(k2 — kg23 — k§26)1/2]). (10)

Again regrouping, we obtain the formal result
1\6 ,(6) ~
M(r;, 1,15, 1,) = (fﬁ) f dk, My(k,)

X exp( jk - £— jlz, (k2 — k2 — k2)V/2

b k)P g e 21
+ z,[R2 — (k§3 — k52)2 — (kgs —~ k§5)2]1/2
— z,(R2 — k§2 — k§2)1/2}). (11)

We can assume that M is nonzero only for k, such
that each of the square roots appearing in Eq (11) is
real. This restriction on the spectrum can be inter-
preted in terms of the angular spectrum of plane
waves to mean! that evanescent waves are not inclu-
ded: These waves would rapidly decay in any case.
In order to evaluate the integral we shall make a
stronger assumption, however. We shall expand each
of the square roots in series and retain only the first
two terms of each expansion. If ! is the transverse
scale of the wave fluctuations on the initial plane, it
is readily seen that this approximation requires

I>x=2n/k, 223/14<1. (12)

These requirements appear to be readily satisfied
for all cases involving waves which have been ran-
domized by terrestrial and solar atmospheric
effects.

Proceeding with the expansions and limiting our-
selves to the important case of the transverse coher-
ence function by taking z; = 2, = 23 = 2, = 2, we
obtain

M(E,z) = (%ﬂy (G)dkgﬁo(kg)exp[jkg-ﬁ + (jz/k)

X (g g — by o+ ke ke — b k)]

= F ik by | = Mo(&) # F-\p JF-n},

(13)

where we have employed the convolution theorem and
defined

h, = exp[(jz/k) (kglkgz
hy, = exp| (jz/k) (k§4k§5

i

- kgskgz)] ’

14
_ kﬁskﬁs)] (14)

N
]

We proceed to calculate the inverse transforms as
follows

Fl{h}—<-—> [P ar, dk, db, |

X expljlke & + &, &+ &) +<Zkz)

x (ky ke — kg k)]
1\2 @
. <ﬁ> / dky dk, a(@ (kg — b )+ gz)
x exp|jlk, &+ k; £)]. (15)

It is convenient to introduce the transformation
u = (z/k)(k

which has the Jacobian (2/z). Consequently,

P = () (B) emfites (5 1) | /¥ a0
X é(u)expg l:(&l + v — (& ﬁﬂ(%)}:’

(zfé) 08, + &) exp[(% ~€1>(£2k)]. (17)
Thus

M(&,z) :Mo(g) W (k/ZWZ)zé(gl + 53)5@4 + ‘E )
x em{(jk/2§)[£2(§3 ~ &) + b — £
= (k/212)2 [ dE My(E")O(E, — & + & — &)

- kés) +&, v= %(kgl + kés)’ (16)

X 5(‘54 - ‘54' +£5 - ‘56’)
x exp{(jk/22)[(; — £))(E; — & — & + &)
+ (55 - 55')(56 - fé - 54 + fé)]} . (18)

The quantity of primary interest is the autocorrela-
tion of irradiance {I(p,q,2)1(0,0,2)). Thus, taking
§ = £3 = 54 =&=0, 52 =p, 55 = q, we obtain
I(p,q,2)I(0,0, z)() )
= (k/2n2)2 [T aE M (£ & — £5)0( £ — &)
X exp{(jk/22)[(p — &) (¢] ~ &)
+ (g — &) — 81 19
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Integrating over &3, £; and dropping the primes on the
variables of integration
“)
U(p,q,2)1(0,0,2)) = (&/2m2)2 [ dx,de, de,ds,
x Mo(gly 52,’— gl’ 54, 55,“‘" £4)
x exp{ (jk/z)[£,(p — &) + &,(q — &)}
= (k/ZTTZ)z f(4)d€1d£2d£4d§5
X Mo(&g, b~ &, — &1, &40 — &5,— &)
x exp{(jk/2)(E;8; + E4ks)}
Experimental investigations and previous theoretical

work in astronomy has been concerned with the spec-
trum of irradiance fluctuations,3,4

My, (f,.fy32) = F, {1(p,q,2)1(0,0,2)) — 1}, (21)

(20)

where F, indicates the Fourier transform with res-

pect to 5,31 Thus, from Eq. (20),

My = (k/212)2 [ © dpdq dt,at,at gk
X Mo(&1,0 — &9, — £, 84,0 — &5,— &)
x exp{i[k/a) &k, + baks) — B, — afy ]}
— (21)256(£,)6 (7).

We interchange the order of integration and set
p— 52 =a, g — & = B in the inner integral. Thus’

(22)

My, = (k/2n2)2 J (4)d§1d€2d£4d§5
x exp{i[k/z)(& & + &)~ &S — &A1)
x [® dadp M, 0, & £, 8,— &)

xexp[—j(af, + B,)] ~ @m)2 6(,)6(5).  (23)

We again reorder the integration

it,, = (e/2n2)2 [V at,atdodp
X My(Ey, &, — £y, &g, B,— &) exp[— j@f, + )]
X f (2)d¥2d£5 exp j[(%)&z + (;i%» 55]
emrogety. ’

The inner integrals are now recognizable as delta
functions and we obtain the remarkably simple result

Y ( 2f,  —zf 2, —2zf
My = ) tadp [Mo(—ﬁ—,a,T,—kl,ﬁ,_E.y)__ 1]

x exp|— Aaf, + £f,)]
zf, — z2f, 2, — zf,
= F(x.B [M0<T:Q’T,“Ezyﬁyﬁk_jj)”'l] .

Equation (25) may be written in terms of the original
variables in the form

(24)

(25)

My = By g[Moley — %5 = %4 — X3 = 2y /Ry %y — %3
=Xy =Xy =8 Yy Vo =V V3= ny/k,yz —¥3

=3’1~3’4=f3)-1]. (26)

Equations (20) and (25) [or (26)] are the basic general
formulas. Before continuing on to obtain some
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general conclusions, we digress to consider the case
of a wave which has weak random phase fluctuations
across the initial plane. This “weak phase screen”
case has been partially analyzed directly from the
eightfold integral. We show that our general formu-
las lead to the same results and, additionally, obtain
some new results for the autocorrelation of irra-
diance fluctuations.

WEAK PHASE SCREEN

Assuming unit amplitude and random phase S on the
2 = 0 plane

Mg = <¢1’~[/§‘I/3‘VZ> = <eij[(sl + Sg) - (Sz + S4)]>
= exp — (8% + S% + S2 + S}
+2(5,5; + 5,8 — 5,8, — §; — S,8; — §Sy, (27)

where we assume Gaussian variables. We define the
phase autocorrelation function p,,

(S,-SJ) = Sgpi]., (28)
where p;; = 1 and

oy = ol — 5)2 + (v, —3,)2]1/2), (20)
Thus
My = exp[— S3(2 + py3 + Poq — P13 — Pa3 — P3q — P41l
It should be observed that (30)

pi; =p {0, — x)2 + (y; —¥;)2]V/2). (31)

Thus using our definitions of £, and noting that we
must take & = — §;, £ =— §,, we find

P13 =p([E; + £)2 + (& + £,)2]1/2),
pog=P([(E; — £)2 + (& — £,)2]7/2),
P1g =034 = p((83 + E)V/2),
Pag = Prg = p((63 + £2)1/2).

Whence
My = exp[SZ(— 2 + 2015 + 2055 — P13 — Paq)]. (33)

For a weak phase screen S; < 1, we write

(32)

My™ 1 +S83(—2+ 2015 + 2055 — py3 — Pp4). (34)

and obtain for the intensity fluctuations, using (34)
with gz"e_ gz, &5—)“’ ‘55, P =4q ::0,
)
(12@)) = (k/2m2)253 [V as at,ae a,
X exP[(]k/z)(glgz + §4€5)]{(s62 - 2)
+20((82 + £3)/2) + 20((£3 + £3)1/2)
- p([(il - Eg)z + (54 - 55)2]1/2)
—p([(E, + £x)2 + (54 + £5)2]V2)L.
The five fourfold integrals which result from the

five terms in brackets are labeled J,, ...,J5 and can
be evaluated as follows:

(35)

J, = (1 — 252)(k/2m2)? f(4)d£1d£2d£4d£5e(jk/z)(§152+g4§s)
= (1— 253 [P at,de 5 (5,)0(55) = 1 — 25; (36)
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T, = o(k/2n2)283 [V drde,ddt ol + £3)1/2)
x exp| (j&/2) (£, &, + £485)]
= 252 [ Parde, p((E2 + £2)1/2)6(£,)5(E,) = 253,

(317)
Similarly,

_ 2(k/202)253 [V dt e, dE p((E] + £DV)
X exp[ (jk/2) (£, + £455)]

= 253 [Pt i p((£F + £2)1/2)6(£,)0(E;) = 253
(38)

Next, setting A = §; — &,, C=§—4&,

D=k +E,
)
— (k/212)28% [ dkdE,dEdEp(((E, — £,)2
+ (& — £5)2]1/2) exp[(jk/2)(E,E, + &455)]
=— }(k/212)253 [P dAdc p((A2 + C2)1/2)
x exp[— (jk/42)(A2 + C?2)]
x [ @ aBap expl(jk/42)(B2 + D?)]
= 4 (e/2mz2)js3 [ BdAdc p(a2 + C2)V/2)
x exp[— (jk/4Z)(A2 + C?)]. (39)
Similarly,
Jy = — k/2n2)253 [ aBaD o((B2 + D2)V/2)
X exp[(jk/42)B2 + D2)]
x [P dadc expl— (jk/42)(A2 + C2)] = JF.  (40)

B =4 +4,

Thus, transforming to polar coordinates in the (4,C)
plane,

Jy +dy =— (k/2)SE Re[j fooo vdr p(r) exp <_]4’Zrzﬂ

= — (k/2)S3 fooo rdr p(r) sin(’%;z). (41)

Combining and setting ¢ = k72/4z, we obtain the
general result

U2@) = 1 + 253 (1— f5° o(2 Vzik) sint at). (42)

For the Gaussian model p(r) = exp(— 72/12), we
obtain

258(4z /k12)2
(I2(z)) = 1 +—8(——/——)—_, (43)
[1 + (42/k12)2]
which was obtained by Mercier2 from the eightfold
integral.

To obtain the intensity autocorrelation (I(p, g, z)
1(0,0,2)) in the transverse plane we need only recal-
culate Eq. (35), substituting £, — p and &5 — q for &,
and ¢, respectively, wherever they appear in the
argument of p in the integral in Eq. (35). Thus

(b, 4,2)1(0,0,2)) = (&/212)253 [V aeae,as g,
X exp[ (jk/z)(&, &, + £,8)]
x{ (552 — 2) + 20((£3 + £3)V/2)
+20([ (5, — p)2 + (55 — @)2]V/2)
=[5 — & — p)2 + (8, — & +4)2]/2)
—p([(& + E,—p)2 + (&, + &5 — @)2]1/2)} . (44)

The five fourfold integrals which result from the five
terms in brackets are labeled Jy,, .. .,J5,, and are
evaluated as follows: Clearly

Jypg=d; = 1— 25g,
szq =d, = 28§, (45)
Toga = 35B0((02 + V).

Comparing the terms in Eq. (44) with our previous
expressions we find, using Eq. (39),

Tupa =5 () 58 SV dadcof{a + )2
+(C +q) ]1/2}exp[ ('k> (A2 + CZ)] (46)
T5pg = <211z> 5% f dBdDP( (B —p)?

+ (- q)z]l/z)epr]k) (B2 + DZ)} 47

Thus, continuing

{a(p,q,2)1(0,0,2)) =1 + ng[p((pZ +g2)1/2) — %{%
X f(Z)dAdC p(((A + p)2 + (C + q)2]172)
X Sm( (A% + CZ)>] (48)

For a Gaussian model, the integrals involved in Eq.
(48) may be readily evaluated using the following
formula which may be deduced from the tables
(Ref. 5, p. 485):

[ e 88 [t — 0)2)dx = 7V/2(1 + £2) /4
Xexp<— __gzaz) & <% tan™1 & + 1?:2)' (49)

14+ £2
Thus with p = exp{— [(A + )2 + (C + ¢)2]/12}, we
obtain for the weak phase screen

<I(P, q,z)I(O, 0, Z)> =1+ 283 [exp(f_(_p_z_iﬁ)

12
_ £ . (p2+4?3
A R exP< 1+ &2 12 )
xsin<tan'1 g4t 02 F qz)ﬂ, (50)
1+¢2 12

where we have introduced the notation { = kl2/4z,
For p = g = 0, we obtain the special result given by
Eq. (43). It may be noted in passing that except for
the special results given in Eqs. (41) and (43), our
formulation is correct for anisotropic weak phase
screens. That is, Eq. (48) may be used with p(p, q)
instead of p((p2 + ¢2)1/2) and p(4 + p,C + gq) in-
stead of p((A + p)2 + (C + ¢)2). For the anisotropic
model p(x,y) = exp(— x2/12 —y 2/l 2), we obtain, using
Eq. (48), the result

-
¥y

gngyz -1/4 gxzp 2 gyzq 2
(&= E2)(1 + §y2)> exp(_z,zu +E7) 21+ gﬁ)
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£p2
12(1 + £2)
gyzqy jj} (51)

m1+§

where we have set £ = kl2/4z, £, =kl 2/42 Letting
{ - ©_we obtain a result for the one d1mensmna1
éaussmn model

QWJHwﬂ»=1+%gFmG£i>Gi?gﬁﬂ4

X e (—:—5’522:2— sin( tan"l £ +
» 12(1 + £x2)> 4

X sin (% tan"l £, + 3 taml & +

(1+&2)

(52)
The formulas given by (50)—(52) have not to our
knowledge appeared previously.

The spectrum of irradiance fluctuations may be ob-
tained from Eq. (25). Thus,using Eq. (33}, we write

My = S§ J® daap ”— 2 + 2p<f£é,i§’—> +20(@, B)

" zf zf, zf,
- o3 ““’""'3)“'3(? i o)

x exp[—jlaf, + ny)]%. (53)

The first two terms cancel and we readily obtain,
using the shift theorem,

My, (1, 1 2) = 4S3DP (/) sin[z (F2 + f2)/2k]. (54)

Equation (54) is referred to in numerous recent
radio-astronomy papers. The formula was first
stated by Salpeter3 for the case z >> X. In the only
published derivation, Jokipii? obtained (54) directly
from the fourfold integral for the one-dimensional
phase screen, assuming that p is cut off for wave~
numbers greater than order 2L /z, where L is the
correlation length of the phase fluctuations. In Ref.
4 a result is also obtained for the spectrum of irra-
diance fluctuations for a strong phase screen. We
shall also obtain the generalization of this result in
a later section.

LIMITING CASE: GEOMETRICAL OPTICS

We consider the case of large k/z in which we as~
sume (zf,/k) = 0 in the limit. We immediately obtain
from Eq. (25), upon applying the Taylor expansion
about 2 = 0 and using the symmetry of M,

My, = 1 gadp [MO(O,a,G 0,8,0)— 1
N (E)ZMO 32M, ) (Zf)
282 of0k,

a2M,  92M, 2f\ 2
(=) ()t

(‘azg siae) \a) | oIk + 8]
- 2\2 (%M, a2,

:sz(z—:o) +(~> F[( ) f2
k 862 k0L, ),

32M, BZMO)
+ - 2. 55
(agg 28,08/, fd &)

[In Eq. (55) the zero subscript applied to the paren-
theses implies §; = & = §;, = §{; = 0].
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Because the Fourier transform in the second term
in Eq. {(55) does not contain z or k, we can assert the
general result that /. 57 will increase as (z/k)2 in the
initial region. For the weak phase screen, this re-
sult can be obtained directly from Eq. (54) as noted
by Salpeter. The geometrical optics 22 dependence
has also been well known in shadowgraph theory.6:7

LIMITING CASE: THE DIFFRACTION REGION

For a phase-screen, as z increases the fourth~order
coherence function of Eq. (33) as it appears in the
integral of Eq. (25), can be approximated by

(0, )

z % 2 PR k
~ g~287 §ezszp(a8)+exp[ Szp(a +‘ki,ﬁ Zf )}
k
AP -

This approximation is valid when e 207/ /8.2y /#) 1,
and we can consider Eq. (33) to be a product of “non-
interacting” factors. Using a Gaussian model to
simplify the expression of this condition, we find that
we require z >> (kl/f) InS,. This condition clearly
restricts our approximation to the diffraction region,
Applying Eq. (56) to Eq. (25), we readily obtain, upon
application of the shift theorem and some rearrange-
ment of terms,

le (e > (kl/f) 11‘150) R F(eZSOZ[p(a,B)—l] + 2e‘S%P(oe.B)
- 2e'2 S§ — 1) — 4 sin2[(f2 +f2)z/2k]F (e7S3P (@)

5 Vi, (f = 0)— 4 sin?[ (f2 + f2)z/2k|F (S5 ().
(57)

The zero spatial frequency term in this equation will
not be exact since it cannot fall within the range of
our approximation. Thus we write instead

My fz >> (R1/f) InSy) ~ — 4 sin2[(f2 + f2)z/2k)]
X F(e-S¢r(@8), (58)

Equation (58) is the generalization of the Salpeter
formula, Eq.(54), of the general (not-weak) phase
screen. We point out that, although we have restric-
ted our discussion here to a phase screen, it is pos-
sible to extend the formula to an amplitude-phase
screen by expressing the wave in terms of a complex
amplitude ¢ and writing the coherence function in
terms of the autocorrelation of the p, as done by
Mercier. It is clear that this procedure will again
lead to a separation of the effects of distance z from
the initial plane into the Fresnel filter 4 s1n2[(f2 +
£2)z/2k] for high spatial frequencies.

A result similar to that derived here was obtained

by Jokipii¢ for a one-dimensional phase screen sub-
jecttoanumber of special assumptions. Equation (58)
suggests that the most convenient procedure to follow
in the analysis of irradiance fluctuations created by
distant randomization is to restrict attention to the
high frequency portion of spectrum, [f >>(kl/z)InS;]

in which the effects of distance are most simply
treated.

CONCLUSION

Equations (20) and (25) express the autocorrelation
and spectrum of intensity fluctuations for a ran-
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domized field as transforms of the fourth-order
coherence on the initial planes. (These results have
been generalized to higher order moments of the
field.8) The special formulas given by Eqgs. (58) and
(55) are useful in radio-astronomical observations
of the solar plasma and in optical phenomena due to

high altitude turbulence, respectively. The interme-
diate case (corresponding to the Fresnel distance
z = kl/f, or the middle of the swimming pool des-
cribed earlier) requires numerical integration for
each particular statistical model of the initial field.
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Exact Solutions to the Yang-Mills Field Equations™®

Gerald Rosen
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New spatially localized solutions to the Yang—-Mills classical field equations are reported.

Manifesting singularities of the Coulomb form, the
spatially localized “particlelike” solutions to the
Yang-Mills classical field equations obtained
several years ago}—3 yield infinite values for the
total field energy. A systematic search for particle-
like solutions of finite energy has been performed
by the present author with methods developed pre-
viously for essentially nonlinear field theories.?
Although the investigation has disclosed the new

and interesting solutions reported here, no particle-
like solution of finite energy has been found. Our
results support the conjecture that spatially localized
solutions of finite energy do not exist in a classical
Yang-Mills field theory.

We work with the Yang—Mills classical field equa-
tions in the form35

oFum/sxv =igelA,, Fw), (1)
F, = aA“/ax" —0A,/dxk + ie[A,, A 1, (2)

where indices are raised with the Minkowskian
metric tensor g = diag (— 1, 1, 1, 1), ¢ denotes the
fundamental unit of charge in a system of physical
units with 77 and ¢ equal to unity, and the components
of Au =4, (x) and Fuv = Fiw (x) are complexn X n
matrices that transform according to the formulas

A, 5 Al = ST1A,5 + ieT15718S/ axn, (3)
F, % F, = S1F,S, (4)

where S = 5(x) is an element of the general gauge
group of all nonsingular complex n X n matrix
functions of x, or a subgroup thereof. Under the
variation of A , the field equations (1) follow from
the gauge-invariant Lagrangian density

£ =—(1/4n)tr(FE,), (5)

where tr denotes the trace of the matrix and the
numerical prefactor — (4n)"! is implied by the purely
electromagnetic field case5 F = f, 1, with 1 the

n X n identity matrix, Associated with (5) we have
the canonical total field energy

1
E =z JAr(Fy Fy; + SFyF )d3x, (6)

a gauge-invariant complex constant of the motion in
the general case, but patently real and positive for
Hermitian A and F,.

The computation of solutions to Egs. (1) and (2) is
facilitated by first applying a gauge transformation
to the fields with

S(x) = T(expie _{)xOAO(y)d}@)y;x (7

in which T is the chronological product ordering
operator, so that A, = 0 at all x according to (3) with
(7). Dropping the primes, with A, = 0 Egs. (1) and
(2) split up to produce the simpler equations

— A+ oy A, F,
H 0x. - le[ 7? lj]’ (8)
. J
S ela,, A (9)
0x; L
F,, =—A4,, (10)
P, S ie[A;, A] (11)
ij T axj axi i

where the Latin indices run 1, 2, 3 and a dot denotes
differentiation with respect to x0,

Particlelike solutions to Egs. (8) and (9) take the
form

A=W+ xoK) 22, (12)

where J and K are constant complex n X n nonzero
matrices such that

[J, K] = iK, (13)

J is a disposable real constant, and ¢ = ¢(x) in (12)
is a real scalar function independent of x0, We have
F;; =0 from (11) withthe form (12), and hence (8)

is satisfied identically. Equation (9) is satisfied by
(12) with (13) provided that ¢ is a solution to the
nonlinear Poisson equation

V¢ +e|ve|2 =0, (14)
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form
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We obtain

¢ =e1ln(l + arl) (15)

as the immediate spherically symmetric solution to
(14), where ¥ = (x3 + x3 + x4)1/2 and a denotes a
disposable real constant of integration in (15). By
putting (12) with (15) into (10), we find that

Fy; = fe~la(r + ay1r2x K, (16)

and the energy (6) is then obtained by explicit integra-
tion as

271 2a
ne?

E = tr(K 2) am

for a > 0. In the case n = 2, an obvious representa-
tion for matrices J and K satisfying (13) is

<i0> (01>
I=\0 o/ K=\g o)

and (17) vanishes. More generally, for any finite-
dimensional® matrix K that satisfies (13) we have

tr€2) = — i tr(K[J,K]) =0,

(18)

(19)

and the energy (17) is zero. Equation (19) also shows
that K cannot be Hermitian with our assumption that
the dimension % is finite. ¢ Finally, we note that

Eq. (14) also admits a broad class of solutions with-
out spherical symmetry.

The A; may be Hermitian in particlelike solutions to

Eqs. (8) and (9) of the form
A= €10, %

where €;,, is the Levi~Civita symbol, the J; are con-

stant complex n X n nonzero matrices such that
[I' I'] = i€ijk1k,

R

(21)

and x = x(¥) is a real scalar function of » = (x% + x3%
+ x8)1/2, Since the form (20) is wholly independent
of %0, Eq. (9) is satisfied identically and (10) states
that F,; = 0. The right side of (11) is evaluated with
{20) and (21) to yield
F;; = [—2eijk X+ (€4,%; — € X )XY

- eeijlxkxlxz] I

=[— €;2x + X)) + €,;,%%,071X —ex®)] L, (22)

from which it follows by straightforward computa-
tion that Eq, (8) is satisfied if X is a solution to the
nonlinear ordinary differential equation
X'+ drlx —3ex2 —e2r2x3 =0, (23)
With the introduction of the dimensionless variable
£ =1+ er2y, Eq. (23) becomes
r2E" + £ — £3 =0, (24)
an equation that has been discussed in a generic con-
text in the literature.” The obvious particular solu-

tions to (24), £ = 0 and { = — 1, produce the non-
trivial special solutions to Eq. (23),
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(20).

ROSEN
X=—Nelr2 forN=12, (25)
and (22) then yields
F; = N —N2)eIrde, % x,1, (26)
se‘lr“leijlxlxklk forN =1
= (27
)‘0 for N = 2,

Hence, the total canonical field energy (6) is infinite
for the solution (20), (25) with N = 1, while the solu-
tion with N = 2 must be discarded as pure gauge.
Now in terms of the dimensionless variable £ = 1

+ er2y, (22) is expressed as

F; = e 1{— Gp? 1E € w738 + (1 — £2)]}1,,
(28)
and thus we find

tr(F,Fy) = snl(l + 1)e72[2r72(8")2 + v~4(1 — £2)2] (29)

for an n-dimensional irreducible representation of the
I; in (21), because we then have tr(f,[)) = snl(l + 1)5,,,
with 2] a positive integer.

Thus, the energy (6),

E =%al( + 1)e 2(9, + 9,), (30)
would be finite if it were possible to find a solution to
(24) such that the quantities

9, = Zf:(ﬁ’)zdr and 9,= f:r‘z(l — E2)24r (31)

are finite. But the differential equation (24) follows
from the variational principle

gg%—) (9, + 9,) =0, (32)
which implies® [by making the specific variation

§(r) — £(r7) with x a constant parameter] that a
necessary condition for the existence of a solution
with 4, and 9, finite is 9, + 9, = 0, Consequently,
since the quantities (31) are both positive, no solution
exists to Eq. (24) with 9, and 9, both finite. The
general nature of solutions to Eq. (24) is discussed
briefly in the Appendix.

APPENDIX

Excluding from consideration the obvious solutions
£ = 0,+ 1, solutions to Eq. (24) that are analytic at
¥ = 0 have the (slowly convergent) expansion about
r=20

£ =«[1 +ar2 + Fa2vt + Ladr8 + O(@*r8)], (A1)

with a(= 0) a real constant, while the solutions that
are analytic at » = « have the (slowly convergent)
expansion about ¥ =
E=2[1+br1+5b2r2+ b33+ 0(4r4)], (A2)
with b(= 0) a real constant. It can be shown that for
both positive and negative values of the parameters

a and b, the solutions (A1) and (A2) become infinite

at a finite positive 7, say at v = 7,, with the asympto-
tic form admitted by (24),
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£ = Var(r, — )l (A3)

The character of (A3) is suggestive of the Schwarz-

as v — ¥y.

schild singularity for a mass-point in general
relativity.
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The Cauchy problem for the coupled Maxwell-Dirac equations is solved within an arbitrary bounded region of
space~time. An integral part of the proof is that the Cauchy problem for a cut-off version of these equations
has a global solution. The analysis requires that the size of the Cauchy data or the coupling constant be suit-

ably restricted.

1. INTRODUCTION

To date,the Cauchy problem for the coupled Maxwell-
Dirac equations?

(—iyhe, + mW =gty (1a)
Do, = (A — 33)y, = ng'yut,l/, (1b)
9ky, = 0 (1e)

has only been treated locally.? In this paper,we shall
prove that this problem can be solved in any bounded
region of space-time provided that the size of either
the coupling constant ¢ or the Cauchy data is suit-
ably restricted.

The basic idea of the proof is quite natural and
simple. First,the coupling constant and the Cauchy
data are spatially cut off in a smooth fashion out-
side the domain of dependence at the initial time
(i.e.,the time at which the Cauchy data are pre-
scribed) of the given space—-time region. The main
technical problem then is to show that this cut-off
version of the original problem has a global solution
when the size of g or the Cauchy data is restricted.
That this cut-off solution satisfies the actual
Maxwell-Dirac equations (1) in the given space-time
region follows from the finite propagation speed of
equations of this sort. We remark that this approach
with only minimal changes in the computations to
follow, also applies to coupled Dirac-Klein—Gordon
equations in which the spinor and scalar fields inter-
act through a Yukawa coupling.

In Sec.2,the basic deiinitions and notations will be
given along with a precise statement of the main
results. Some of the less computational proofs will
also be presented. The existence of solutions to the
cut-off problem will be proved in Sec. 3 using the
techniques of Refs.3-5. Proofs of fundamental but
detailed inequalities will be carried out in the
Appendix.

2. THE MAIN RESULTS

We begin by describing the solution space and dis~
cussing the free equations [i.e.,g = 0 in Eq. (1)].
More of the details can be found in Ref, 2, Sec. 2,
and Ref.6,Sec.1. The Dirac equation can be written
in a more convenient form

Z—t‘k (x,8) = (@*V + pm)w(x, 1) (2)

by choosing @ =(a, 012,013) = (yOy1,—y0y2,—0y3)
and B = iy0. Because of the anticommutation rela-
tions satisfied by the o, and g,the generator of Eq. (2),
i@V + Bm), is self-adjoint on the Hilbert space of
square-integrable functions from £ ; to spin space.

In addition, [i"1(@*V + pm)]2 =m2I — A, thus suggest-
ing the following definition of the escalated energy
spaces of the Dirac equation.

Definilion: Let D be the Hilbert space of square
integrable functions  on £, with values in spin
space.” Denote the diagonal operator (m2] — A)1/2
by A. Then,for o = 0, D, is defined to be D(A%)C D
endowed with the norm

191, = lacyl],.8

D, so defined is a Hilbert space. The operator

(@-v + pm)isskew-adjoint on D with domain D,, and
hence the propagators of the Dirac equation D(¢) =
exp[t(a*V + pm)] form a strongly continuous group
of unitary transformation on each D, .

The Hilbert space treatment of the Maxwell equations
can most easily be accomplished by rewriting Eq.
(1b) with g = 0 in its vector-valued form

d ;v 0 I\/v
,(.“>:< ><“> @)
at \v, a 0/\v,
The solution space can then be described in terms of
v, and 1')“.

J. Math, Phys., Vol. 13, No. 5, May 1972



YANG-MILLS FIELD EQUATIONS 597

£ = Var(r, — )l (A3)

The character of (A3) is suggestive of the Schwarz-

as v — ¥y.

schild singularity for a mass-point in general
relativity.

Work supported by a National Science Foundation grant.

M. Ikeda and Y. Miyachi, Progr. Theoret. Phys, 27,474 (1962).

R. P. Treat, Nuovo Cimento 50, 871 (1967),

H. G. Loos, J. Math, Phys. 8, 1870 (1967).

G. Rosen, J, Math, Phys. 9, 996 (1968);9, 999 (1968); and works
cited therein.

5 Physical identification of the electromagnetic part of the Yang—
Mills field must await contact of the theory with experiment;
alternative and perhaps more interesting possible identifications
of the electromagnetic part have been discussed by J. Schwinger,
Rev. Mod. Phys. 36, 609 (1964) and H. G. Loos, Nuovo Cimento 584,
365 (1968), for which the solutions reported in the present paper
relate classical electromagnetic structure.

O

6 On the other hand, if an infinite-dimensional representation
were admissible on physical grounds, then self-adjoint operators
J and K could be found, and

tr(k2) = 52, K218 =203, |Kli)|2

would be positive for any complete orthonormal basis {| )} in
the representation space [with the gauge group restricted to
unitary operators S = S(x)].

7 See the works cited by E. Kamke, Differentialgleichungen
Losungsmethoden und Losungen (Akademische Verlags., Leipzig,
1967), p. 564, Eq. 6. 82.

8 G.Rosen, Quart. Appl. Math. 27, 133 (1969).

On the Cauchy Problem for the Coupled Maxweli-Dirac Equations*

John M. Chadam?®
The Institute for Advanced Study, Pvincelon, New Jersey 08540
(Received 24 September 1971; Revised Manuscript Received 4 January 1972)

The Cauchy problem for the coupled Maxwell-Dirac equations is solved within an arbitrary bounded region of
space~time. An integral part of the proof is that the Cauchy problem for a cut-off version of these equations
has a global solution. The analysis requires that the size of the Cauchy data or the coupling constant be suit-

ably restricted.

1. INTRODUCTION

To date,the Cauchy problem for the coupled Maxwell-
Dirac equations?

(—iyhe, + mW =gty (1a)
Do, = (A — 33)y, = ng'yut,l/, (1b)
9ky, = 0 (1e)

has only been treated locally.? In this paper,we shall
prove that this problem can be solved in any bounded
region of space-time provided that the size of either
the coupling constant ¢ or the Cauchy data is suit-
ably restricted.

The basic idea of the proof is quite natural and
simple. First,the coupling constant and the Cauchy
data are spatially cut off in a smooth fashion out-
side the domain of dependence at the initial time
(i.e.,the time at which the Cauchy data are pre-
scribed) of the given space—-time region. The main
technical problem then is to show that this cut-off
version of the original problem has a global solution
when the size of g or the Cauchy data is restricted.
That this cut-off solution satisfies the actual
Maxwell-Dirac equations (1) in the given space-time
region follows from the finite propagation speed of
equations of this sort. We remark that this approach
with only minimal changes in the computations to
follow, also applies to coupled Dirac-Klein—Gordon
equations in which the spinor and scalar fields inter-
act through a Yukawa coupling.

In Sec.2,the basic deiinitions and notations will be
given along with a precise statement of the main
results. Some of the less computational proofs will
also be presented. The existence of solutions to the
cut-off problem will be proved in Sec. 3 using the
techniques of Refs.3-5. Proofs of fundamental but
detailed inequalities will be carried out in the
Appendix.

2. THE MAIN RESULTS

We begin by describing the solution space and dis~
cussing the free equations [i.e.,g = 0 in Eq. (1)].
More of the details can be found in Ref, 2, Sec. 2,
and Ref.6,Sec.1. The Dirac equation can be written
in a more convenient form

Z—t‘k (x,8) = (@*V + pm)w(x, 1) (2)

by choosing @ =(a, 012,013) = (yOy1,—y0y2,—0y3)
and B = iy0. Because of the anticommutation rela-
tions satisfied by the o, and g,the generator of Eq. (2),
i@V + Bm), is self-adjoint on the Hilbert space of
square-integrable functions from £ ; to spin space.

In addition, [i"1(@*V + pm)]2 =m2I — A, thus suggest-
ing the following definition of the escalated energy
spaces of the Dirac equation.

Definilion: Let D be the Hilbert space of square
integrable functions  on £, with values in spin
space.” Denote the diagonal operator (m2] — A)1/2
by A. Then,for o = 0, D, is defined to be D(A%)C D
endowed with the norm

191, = lacyl],.8

D, so defined is a Hilbert space. The operator

(@-v + pm)isskew-adjoint on D with domain D,, and
hence the propagators of the Dirac equation D(¢) =
exp[t(a*V + pm)] form a strongly continuous group
of unitary transformation on each D, .

The Hilbert space treatment of the Maxwell equations
can most easily be accomplished by rewriting Eq.
(1b) with g = 0 in its vector-valued form

d ;v 0 I\/v
,(.“>:< ><“> @)
at \v, a 0/\v,
The solution space can then be described in terms of
v, and 1')“.

J. Math, Phys., Vol. 13, No. 5, May 1972



598 JOHN M. CHADAM

Definition: Let M be the Hilbert space of square-
integrable functions (}) from E, with values in
R4 @ R4, Denote the 4 X 4 diagonal operator (— A)1/2
by B. Then, for every B =z 3,M; = M} ® M3 is de-
fined to be D(B({I + B@s-1Y/2)) @ (I + B@8-1/2) en-
dowed with the norm

H (Z)“ = ”{”B(f + B@B-/2))|2 + ¢ + 3(25-1)/2)15”3}1/2
My

M; so defined is a Hilbert space.? It is a straightfor-
ward exercise to check that M(f): M, — M, defined by

o)~ (SR ()

is a continuous one-parameter group of orthogonal
transformations on M, with skew-adjoint generator

(25 6)-(2 )

and as such is the propagator for Eq. (3).

The Cauchy problem for the coupled Maxwell-Dirac
equations in this Hilbert space setting can now be
described. The solution space is taken to be the es-
calated energy space D, © M, for some fixed « and 8.

Given Cauchy data (Y9, (gg)) € D, ® M, at some finite
time ¢, one must find functions ¥ and v, with ¢ - ((#),

(48): (t, T) = D, ® M, continuous, which satisfies,
for t, < t < T,(the integrated form of) Egs. (1)

WD) =Dt — t)¥° =g [ DE—s)Vi)y6)ds, (5a)

(5) w0 e 0= o

where

3
V(s) = i(vo(s) — k2=1 v, (s)ak) (6a)
and
ViY(s), w=0,
= 6
56| Vla,uls), u=12,3. o)

The integrals appearing in Egs. (5) are to be inter-
preted in the strong Riemann sense. The solution is
said to be global if T can be taken to be + .,

Within this framework, Gross2 has proved that for
sufficiently small T — ¢, (i.e., locally) the above
problem has a unique solution in the space D; & M,.
The interaction term in Eq. (5) is not semi-Lipschit-
zian on D; ® M, thus precluding the use of the
Picard theoryl19 for obtaining local solutions and re-
quiring instead the observation that the well-known
results of Kato!1 are applicable. By using escalated
energy spaces (i.e., raising o and g), as will be the
case in this work, this problem is avoided and the
existence of solutions locally is obtained immediately.
As is well known (cf.Ref. 2, Sec. 4, p. 14), however, the
likelihood of having the necessary a priori energy
estimates for extending the solution globally is
greatly reduced. In fact, the following results can be
roughly viewed as saying that these estimates are
available if the discussion is restricted to bounded
space-time regions and the coupling constant or
Cauchy data is suitably small. We now state the re-
sults precisely.
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In order to avoid unnecessary measure theoretic
complications, the space~time volume R is taken to
be a domain with smooth boundary. In addition, there
is no loss in generality in taking ¢, to be earlier than
the times in R since the problem can be separated
into a forward and backward Cauchy problem. The
constants o« and 8 are now chosen so that ¢ () and
v(t) lie in L?(E ;) for a wide range of p's (most im-
portantly,p = ). In particular for a = 2, 8 = 3/2,
standard techniques??2 apply to show that if ¥ € D,
and v € M3 5 then y € L#(E,) for 2 < p =< © and

v € L?E,) for 6 = p = ©. The types of solutions that
we shall be discussing, at least in the beginning (cf.
also Theorem 2. 3 and the subsequent remarks), are
described in the following.

Definition: Suppose

. v0
and <1,L/0’ ({)0)) €D2®M3/2.

An R-solution of the coupled Maxwell-Dirac equa-
tions in D, & My, with Cauchy data (9, (%)) at ¢, is
a pair y and v, with £ — (W(1), GB):[tg, Tz] - Dy &My
continuous, which for each £, < < Ty satisfies Egs.
(5) a.e.in the section R; ={t:(x,t) € R}

Tp= supt

(x.8)e R

Theorem 2.1: Suppose that (Y9, (%0)) € Dy & M5,
[i.e.,a = (28+ 1)/2 = 2] and R is a bounded domain
in space~time. Then the (integrated form of the)
coupled Maxwell-Dirac equations have an R-solution
in D, ® M4, provided that the coupling constant or
the (D, ® M3,,)-norm of the Cauchy data is suffi-
ciently small (the size depends on the size of R).

The proof of Theorem 2.1 is carried out by obtaining
a global solution to a spatially cut-off problem which
will be shown to be an R -solution by hyperbolicity
arguments. Specifically, outside the compact spatial
region obtained by intersecting the domain of depen-
dence of R with ¢ = £, (which we shall henceforth call
R, ), cut off the Cauchy data and the coupling constant

to obtain (2, (;’%c)) €Dy ® M), and g, € CZ(E;). For
specificity, we shall take as the cut-off functions
those obtained by first multiplying with the charac-
teristic function of Rt’0 (Rto enlarged by one in each
direction) and then mollifying the resulting function

in such a way as to extend the support by one again;
Le,f00) = Jxp ) Ok —y)dy, where ¢ is the
0

standard mollifier. The existence of a global solution
to the resulting cut-off problem comes from the
following theorem, the proof of which is the content
of Sec. 3.

Theovem 2.2: Suppose {9, (Z%)) €Dy ® Mg,

c
have compact support and g, € C{E3). In addition,
suppose that the associated solutions of the free
Dirac equation satisfies the decay condition
lw2®l, = CwNQ +1¢|)c with 3/4< € < 1. Then
the cut-off Maxwell~Dirac equations

V) = $2) — f Dt —s)g. Vs)¥(s)ds,  (Ta)

(:ZD = (:;2>“ Jig e~ s’(gﬁ@))‘“ (70)

have a unique global solution (Y, (), (5'z8)) €ED,oM;y,
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0
provided that CQ) + 140l + 1158l , or gl 15

sufficiently small (the size depends upon the size of
the smallest set which contains all their supports).
In addition the spinor component possesses the same
temporal decay as the free solution.

Proof of Theorewm 2.1 from Theorem 2.2: First
we show that the conditions on @9, (”o)) in Theorem
2.1 imply the conditions on their assoc1ated cut-off
funct1ons requlred in Theorem 2.2. Recall that

fo, ») f(y) o(x — y)dy, where ¢ is the stan-

dard mollifier. Thus, |99/ 1, = Il xa, F1, 113 ¢ll,,
0

where 7“1 + 1 = p71 + g1 which implies that
l&glyw=gllolly s, w2, o, = const [|yQll, , =
const ”XR’ ll/o ”2 I ¢ ” 2,1 = = const ” IPO ”2 2 l o] “2,1 =
const || wOIID Ioll,,, 021 ny, = f Xaj, vof,
B¢ + B) ¢I|1 = Il xa, 113 lvolgllBU + B)<¢>Hl < const
vol(®; )1/3 [ v0 |y | $ lz1,and 1921,
Hvolllg =< const || Xy, #0ll, 1ol 4 1 = const ”'UO“Mz/
l¢lly 1. The constant C(9) is usually obtained by
means of a decay estimate of the sort (Ref. 6, Propo-
sition 1.1): If 42 € D;n W3.4(E,), then for 1<q< 2
Iwo(t)ll = const (1 { | £]) (3/4‘3/2)“ Y2l 5 ,. Thus,the

decay estimate is vahd with C(y9) = const [Y0ll5 /5
by taking ¢ = 6/5. As above Y9 € D, with w2l = const

||\P°“ I $ll5, and (WOl 5/5 = const ”XR’ o’ 6/5
e ”3.1 = const || x; 3190151 @15, =< const
vol(R; )13 11y O0lly 51l ¢ll5 ;. By assembling the above

inequalities it is clear that the hypotheses of Theo-
rem 2.1 imply the conditions required on the cut-off
functions in Theorem 2. 2.

= const

Thus, Theorem 2.2 provides a solution to the cut-off
equations (7). We now show that it is an R-solution of
the couple Maxwell-Dirac equations in D, & My,
with Cauchy data (¢/°, (30))at t = £,. We begm by
examining the support properties of the cut-off solu-
tion in the standard manner. Using the fundamental
inequalities proved in Lemma A.1 in the Appendix
(see especially Remark 1 following its proof), the non-
linear term in Eq. (7) is a semi-Lipschitzian map on
D, & My, SO that the solution (¥, (¢), (12(3)) is the
limit in D, ® M,,, of the Picard iterates, defined re-
cursively by

Yo = w0 — [, Dit—s)g, VirL(shy 21(s) ds
(8a)

CZZ» =(ZZ$§)—f t _S)(gczm-l(sbds, (8b)

where V*"1(s) and J71(s) have the obvious meaning.
By induction, using the well-known support properties
of the propagators D and M (e.g.,Ref. 13), it is clear
that the iterates have their support in the domain of
influence of the support of the Cauchy data and coup-
ling function at / = ¢{,. In addition, as mentioned in
the previous remarks, convergence in D, © Mj;,5 im-
plies convergence a.e. of a subsequence to the same
limit so that the support of the cut-off solution is
Iikewise within the same region. The continuity of
W (), Gef):[ty, ©)— D, @Ms/z and Remark 1 of the

Appendix guarantee that g ﬁ Dt — s}V (s)y,(s)ds

and g Jime— $)(s,{)ds exist as D, (respectively
8 valued 1ntegrals for all ¢ < o, By forming
YOO — wo), J;, Dt — )& —8) V() (s) ds,
and f M(t — s\ (g — &) (; $yds and usmg the sup-
port propertles of the proﬁagators and the cut-off
solutions, it is clear that the above quantities for
each { are zero a.e. in the sections of the domain of
influence of R,0 (which by design contains R). Thus,

(., (39)) is an R -solution of the coupled Maxwell—-
Dlraccequatlons in D, ® M,,, with Cauchy data
WO, (bo)) at time £,.

Since the Cauchy data is fairly smooth, one can ex-
pect that the same is true for the above solution. In
particular, we have the following result concerning
the differentiability of the solution.

Theovem 2.3: With the hypothesis of Theorem
2.1, the resuiting solution @ (), (”(tg) as a function
into D, ® M, ,, is strongly contmuously differentiable
and satlsﬁes

Y(t) = (@V + pm)y ) —gV iy ), (92)
vy (t) = Av, () — £4,(), (9b)

for eafh t w1th (x,t) € R, a.e.in R,, while y/ (0) = ¢/©
and (u(o) (50) a.e.in the causal shadow of R at f= to

Proof: As a,B grow,the energy spaces D, & M,
shrink while the associated norms become larger.
Thus, the solution of Theorem 2.1 is a continuous
function into D; ® M, 5. The proof of the differentia-
bility will be obtained directly from a general result
of Kato (Ref.11, Theorem 5, p.211) as follows. The
underlying Banach space is taken tobe D; ® M, ,, on
which the operator (a*V + Bm) @ (A b generates the
continuous one-parameter group D{t) ® M(¢). Now the
domam of the generator is D, & D(Bz) @ DB)DD, ®

({2, so that the Cauchy data @9, (39)) [and hence

9, (%¢))] is in the domain of the generator. As in the
proof 6f the cited result of Kato (Ref. 11, p. 228), if the
nonlinear term of Eq. (7) is differentiable, then in
D, & M1/2

% V@) = @V + gm)p(t) —g,VOW®),  (10a)
d (ve\_fo INw@N _, (0 106
dt(il(t)> (A O><b(t)> g (J(t))’ (100)
with ¢ (0) = ¢ and (;’%8) = ”° . Thus, for each
te (t07w)
j—t V() = @V + m)p() — g, VEOIWE),  (11a)
dz
ﬁv(t) = Avl(t) — g, J () (11b)

are valid in D; and M%,, = L2(E ), respectively, and
hence a.e.in E;. But on R, for each ¢ with (x,f) € R,
g =g and in the causal shadow of R at? = to,
Y9=9¢90 v =v, and 79 = 40 a.e.,thus proving the
theorem.

All that remains then is the differentiability of the

integrals in Eq. (7). As stated in the hypothesis of the

general result of Kato, this follows from the fact that
Ve ), (t) ® g, (2»)belongs to (D, ® M, C)
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D, ® D(B2) ® D(B) and that [(@*V + pm — 1) & (£_])]
lg.V. &)y . @) @ g, (%] is strongly continuous with
respect to £, Both conditions follow in a straightfor-
ward way from the fundamental inequality in the
Appendix, the second requiring in addition the con-
tinuity of £ > (W () (358)): [tg,0) > Dy ® My, as

given by Theorem 2. 2.

To conclude this section, we make an observation that
allows the above results to be more easily compared
with Gross' basic result (Ref.2, Theorem 1, p.4).
Note that the space used by Gross, D, ® M, is equiva-
lent to D, ® D[B( + B)™1/2] @ D[( + B)"1/2]. The Hil-
bert Space obtained by completing D, ® D(B(I + B)-1/2)
®D(I + B)"1/2 with respect to the norm {| vliig +

| B + BY1/20|3 +|¢ + B)1/2 & (|3}1/2. But this
norm is smaller than the (D, & M, ,,)-norm so that
our solution in Theorems 2.1 and 2. 3 can also be
considered as a (Dg ® Mg)-valued function which is
differentiable and satisfies the same differential
equation.

3. THE CUTOFF EQUATIONS

This whole section will consist of outlining the proof
of Theorem 2.2, The argument will follow, in general,
along the lines of that presented in Refs. 3-5, but will
require certain refinements and permit some simpli-
fications. It is these modifications that we shall try
to stress in this presentation. With no loss of genera-
lity, we shall assume that the supports of g,.,¥92,v?,
and ¢9 are contained in B p(O), the ball of radius p
about the origin. '

The local existence of solutions to the cut-off problem
in D, ® M5, follows by the general results of Segal
(Ref. 10, Theorem 1, p. 343) from the semi-Lipschitz
nature of the nonlinear term as established in Remark
1 of the Appendix. The cited work also guarantees _
that the solution exists in the maximum interval (¢,, )
for which I| (Y. @), (¢ ccgg))ll D@ My, remains bounded.

We shall show that with the additional hypotheses of
Theorem 2.2, the solution remains bounded for all
t=1t,.

The first component of Eq. (7b) can be written more
explicitly as
v, (t) = cos(tB)v? + B-1 sin(tB)1?
— [ B-1 sin(t — 5)Blg, I, (s)]ds, (12)
0

where J_(s) is given by Eq. (6b) and depends only on
V. (s). Substituting Eq. (12) into Eq. (7a) gives the re-
lationship

Ylt) = $Ot) — ftzD(t — 5)g, VAW, (s)ds
+i [l D 9)e, (J,‘(B-l sin(s — 7) Bg, (1))

3
— (B! sin(s — 1) Bg,J, (1)), akd‘r) W (9)ds,
k=1 (13)

which depends only on ¥, (f) and the prescribed quan-
tities (9, (3§)). Since the propagator D(t) is unitary
on D,, ¢
e @l p, <1425, + [ g, Vo ¥e(6)l 5 ds

+ [ g ([ @7 sins — ) B (0o
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3
- kz_)l (B! sin(s — 7)Bg,J (1)), a, dv) v, (s)“n2 ds.
(14)

Now, using part (ii) of Lemma Al with X and ¢ = 0,
x being either v9(s) or B~ sin(s — 7) Bg,J, (1) and ¢
being Y, (s) or a,y,(s), one obtains

I @5, = 14215, + constilg 5, f,; {ll cos(sB)vQ
+ B°1 sin(sB)Qll loc  + f: | B-1 sin(s — 7B
3/2 0

X god (Tl 1,2;/2 drily, (©)N5e ds, (15)

where the super loc refers to the fact that in comput-
ing the norms the integration need only be taken over
the support of g.. This can be reduced to a simpler
inequality in ¥, by using the following particularly
convenient form of the result that locally the solutions
of the wave equation decay very rapidly.

Lemma 3.1: Suppose (,{) € M, ;o and supp(f),
supp(k) C B, (0) (i.e.,a ball of radius p about the ori-
gin in E ;). Then for arbitrary o = 0

| costBf + B! sintBh || }”0:}6/2
= Clo,n) Il () “Ms/z (P +1tl)ye, (@6)

where loc indicates that in computing the norm the
integration is only taken over BP(O).

Proof: To begin, suppose f,h € C? (Bp (0)). Then

B(I + B) B1 sint Bh(x)
= B~1 sint B(B(I + B)r) (x)

_ const

¢ tx-y 1=l BY + B) k] (y)dS,,

which is zero in B, (0) for £ > 2p. On the other hand,
for all ¢ and in particular for |#] = 2p

| B-1 sin(B)k || M},
= || B(1+ B) B 1 sin(iB)hk ”Mé/z
=l ¢ + B) sin(tB)n ||,
=@+ B, = IlhllMglz.

Thus, || B2 sin(B)h 3y = (1+20)°[hllag (1 + [2])o.
2 :
Likewise || cos(¢B)f HLO;: = (1 + 2p)° "f”M;/Z(l"’ [¢])-o

so that inequality (16) 31s2 verified for f, k € C? (B, (0)).
The result now follows from the denseness of these
functions and the continuity, uniformly in ¢, of the map
(f,h) = cos(tB)f + B! sin(tB)h: M4,y > My [which
in turn follows from the unitarity of M(f) on M,,, ].

Returning to the proof of the theorem, we may use
the above result directly to obtain

Ty @15, = 1421 5, + const, l&:lls, o

x[“ <ZE>HM , Jo, @+ lshelive @)z ds
3/2

NIRRT PRI
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< Gl ds). (1)
For notational convenience, we define the function

Wli= sw {lv©ly, + @+Ishelveloh. a8

sEtt

It > () [ty t) = D, is continuous, as is Y, on its
interval of existence, then |y [, is continuous as a
map from [¢,,7) into the reals. In fact, it is [y, [,
which we will show is uniformly bounded, thus
guaranteeing the same for [y, (¢) HD Usmg this defi-
nition and taking 0 > 1, we have

0
0
UC

I, @y, = 162,
Twl,

+ const el 2.0 U

M3/ 2

+ ft: <f::(1 +ls—~71l)o ”g‘ch(T)”Mg/z d'r> ds ]W[;}-

(19)
Noting that || - [ a3, < const -1, 2 and using the esti-
mate in Remark 2 of the Appendix, we reduce the
above to
lwdt) i, < 1921,
v0
+ COHStp,o ”gcllz,oo (.S) ]w[t
Uc M3/2
gl f(fra+ls—rire
4]
X(1 + |7])-3¢/2 d'r> ds ]lpc[?] (20)

The inner integral can be bounded by a technical
lemma of Segal (Ref. 3, Lemma 3.1, p.467) with a
bound const (1 + [s|)"3¥2 by taking ¢ = 3/2. Thus,
the s-integration is bounded because of the choice of
€. Summing up, we have

19O, = 121,

+ const, llg.ll H v? 1w,
p.0 8cll 2,00 U‘g My tpc ¢
+ const, , glly gl o J¥:[ 3, (21)
We also need a similar estimate for || ¢, (#)l , to ob-
tain a nonlinear inequality in ]y,[, from which to
deduce its uniform boundedness. To this end,begin-

ning with Eq.(13) and estimating the Dirac propagator
as in Proposition 1.1 of Ref. 6, we have for 1<g <4/3

%01,
b const [ [ 16— 13/ &, V2(6) ¥4 5) 2,5

+ const ftt [t—s|14] g,
0

=CNA +I[2])e

X (ft:(B‘l sin{s — 7) Bg,J. (7)),

3
- ‘;?1 (B! sin(s — 1) Bg,J (7)), o, d'r) V(s , ds] )

(22)

Again, using part (ii) of Lemma Al as in equality (15)
with g as above, we get

lw. @O, = CERN +|2])e
+ const [l g,ll5 5,-g ftt{ll cos(sB)v?
+ B1 sin(sB)#0| ‘i M/,
+ f | B-1 sin(s — 1) Bg,J, (1) ”Ms/z}

X [, N5e ds. 23)

The argument proceeds as above to give the follow-
ing analog of inequality (20):

e (D, = CDA+ |t)e

0
2

+ const. _ [lg. |l 1[ ‘
po 18c 1l 2,20(2-9) My

x JF e slva( + lsye as 0l
g ly S, 1= s /e + 1s1yoerz as 1,7,

(24)

using the cited technical lemma of Segal to treat the
7-integration.

A similar estimatel4 shows the s-integration can be
bounded by a function of { which decays faster than
t~¢. The particular form of the result which is appli-
cable in this case is: 1 0 < a<1and b > 1, then

foo [t —s|-a(1 +|s|)® ds = const(1 + |¢#]|)@
Too

for all £ € R. Since 0 and 3¢/2 >1 and 1/q < 1, the
decay property will follow if we can choose ¢ < 1/ < 1
or equivalently 1 < ¢ < 1/€. Since € < 1, we can
always find such a g. In addition, e > 3/4 automati-
cally guarantees that for this choice ¢ <4/3 as re-
quired for the decay of the Dirac propagator. Thus,
we have

I, (DI, = (1 +1¢])e ;C(‘P?) + const , ;18,115 2 4¢2-9)1
2
(i)

By adding inequalities (21) and (25), we obtain

My, JWels+ const Il gl , ]wc[?“. 25)

Wele = 1921, + CWQ)

+ COHStp o (“gc I 200 T ch ”2 2q(2_q)‘1)

D55y, 1Welit const, y Nl (el

+ ”gc “2,2q(2-q)_1)]q/c[?' (26)

since g has compact support |l g, [l; , = const p3/2
lg: 115, and lig, ll2,242-gy2 =< const.p3@-d/2¢|g |,

= const p3/2 chll2 o Since 1 < g < 4/3 (assummg

p = 1). We can fix 0 = 3/2 (the maximum needed in
the proof) and use the explicit representation of
const, , as given in the proof of Lemma 3.1 to obtain
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Wele = [Iwelly, + cap )]

#|Cxllglly w3 H(ZE)UMBJ 29

+(Cy 921813 ) 10 I3 @7

For fixed p, by taking (| g.[l, ., or ﬂ( lfM3/2 suffi-

ciently small the coeff1c1ent of v, [, can be made
less than 1/2 so that

1l = 219215, + CHA +2(C,0%2 11 8,13,
(28)

from which the uniform boundedness of ]y [, follows
from an observation of Segal and Straussl5 by
choosing w2/, + c(w9) or lgll, . sufficiently
small. Thus, the theorem is proved, including the
decay property of 'y, @)1, provided we can also
show that [[(¢¢ (t)) Iy, remains bounded for ¢ > ¢,.

To this end, using Eq. (Tb), we get

v, () v0
t')c(t)> o

t

o)

ds

M3/2

+
My,

v0 ¢
=< ( c) ‘M + fto II‘gchc(s)llMB/2 ds
= (g:é) . + const || g1 2
¢ - 2
x Ji (1 +1sh3er2 as Ty, 3, (29)

the last inequality following from Remark 2 in the
Appendix, The uniform boundedness of |y, [, and the
fact that € > 3/4 guarantees the uniform boundedness
of !1(30{3) ||M3/2, thus proving Theorem 2. 2.
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APPENDIX

In this section, we sketch a proof of three basic in-
equalities and then from them outline the proof of the
properties of the interactions which were used in the
main body of the papers: e.g., that the cut-off inter-
action maps D, ® M3, into 1tse1f and as such is semi-
Lipschitz (needed in Theorems 2.1,2.2, and 2. 3) and
that the actual interaction maps D, ® M3 o into itself
(Theorem 2. 1), the estimates used in mequaht1es (20),
(23), and (28) in the proof of Theorem 2.2. The cru-
cial thing to notice about the interactions is that,
apart from the scalar factor g or g, each component
is a linear combination of terms x;z}/ 1,7 =0,1,2,3,
where yx; may be the components of 3 or v.

Lemma Al: Suppose g is a constant,g, € CP(E;),
¥; are the components of ¢ € D,, x; are the compo-
nents of X € D, or M;,, and similarly for the tilded
quantities. Then, with X denoting either x or X and ¥
either Y or x,l/,

@) gy — %¥llaz = g const{Ixllyy Iy —Plp,
+ ”‘I’”D2 flx — ;{”Mé/z}
and,if 1l =g = 2,
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(i) g, 0¥ — Xi¥) 2,4 = const g, ll5 55059
ond X{||X||M31/21| Y — 117“1,24- I ‘Illll,2 hx — Xl Mi/z}
(i11) | g, (x;¥; — Xs¥,) 1,4 = const (g, Iy,
g aga-grllx — X122l — xH372 el
+Ixlyzixge v -,
lhx— gl e 12 el e
Xl by =PIy ly — g1y

Proof: We begin by recalling some facts that will
be used in the calculation. First || F | » = const
lflly4 = const ||f||D for 2 = p <o, while [ f 1,
const || f ||M1 L for 6 = P = 6. In addition, || £ Mx/ =

I F1l ., thus permitting us to simultaneously treat the
case of X a spinor or a vector by using its M} 3/2
norm in the bound. Finally, we shall also make use of
the familiar Sobolev inequality | D1f{l, =< const

I D2f [13/2 | f 1 /2 where

9t f
I DAfil, .
7 k+k +k3 =k J) aklxlakzxzaksxsnp
We also define

Ipex |, = sup I Dy 1,
t=1,4,3,

To begin the calculation,
¥ — %13
\l’] - )?,hl/])”% + ” DZ(X;'WJ - )’(.ﬂ;j) ”2]1/2.

lgx;¥; — iitl:,-)"z,z =g const{lx;

+ ID(x;
Now each term will be bounded by the expression
appearing on the right-hand side of the expression (i).

The zeroth-order terms can be written as g(x; — x,)xp

+ &% zp ). Calling the terms Oai and 0aii (a notation
which w111 become increasingly useful as the argument
progresses), we have

;1o
< g const || x — X llMé/zlle,,z,

I0aill, =g ll(x; — x

thus contributing to the inequality with ¥ = . Like-
wise,

—‘pj ”2
= g const || )”(”Mé/z I —¥lip, ,

I Oaii ],

<gl%l,

giving the other term in the bound.

Letting D#*y, denote any of the kth-order derivatives
(since, in estimating them, we shall use the fact that
they are all simultaneously less than | Diy, I,

| D=X || ), We can write the first-order terms as

gD(Xilp] - iz%)
=gDx;¥; + &x; D¥; — 8DX;¥; — &RV
=g[D(x; — KW + DXl — ¥;)
+(x; — X)) DY; + D05 — )]
and the terms in the last expression will be referred

to as 1di, 1aii, 1bi, and 16ii. The estimates proceed
as follows:
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[ 1aiﬂz Sg”D(x; - )‘(;) ”4"\%”4
= g const H Dz(Xi - ‘X;) 11%/2 ” Xi — Xs ” 3‘0/2 I ’J/]‘”4
=g const | x — iIiMé/z Hllfﬁpz.

The other terms are treated similarly, giving

| 1aiill, < g const | i!|M1 ly — ¢ HD s
Hlblﬂzsgconstﬂx—x“Mx ﬂlf/HD,
I1biill; = £ const Il Xlluy, lltl/ Mpz

The second-order terms can be handled similarly:
gD2<Xilpj - )‘zi&j)
— D2R¥; — 2D3,D¥; — D)
=g[D2(X,' - ‘)‘Zi)d”j + Dzi,-(lk,- - ‘aﬁ"])
+ 2D(x; — X;) DY, + 2D%; D, — )
+ (i — X D2; + X, D2ly; — ).

The typical estimates are

I2aill, =gl D2(x; — %), (R72/
= g const || x — i”Mé/a g ”02,
I 2bill, = 82 § Dx; — %) o | DY 114
=g const | x — )'(ilmé/a”w Ip,
| D2y, 5
=< g const || y — ‘)”(HMé/z M/”Dz'

l2cill, =gllx; — %1,

The second estimate follows along the lines of the
first except that terms with the derivative of g, now
appear and that we are now allowed to take other
norms of the coupling function besides the sup norm.
For example,
0aill, = g, z-p i — Xi s N5 115

= const 1, 124 (2 1 x = X llagy, 19115,

which reduces to the previous case with ¢ = 2. Like-
wise,

I Oaiill = const lg, !l 5, (z-g)-1 I iffM§/2 ly —¢ I, -

In the first-order terms besides the above there are
also terms like Oai and Oaii with g, replaced by g/.
Proceeding as above, one obtains

I Dlg, (x¥; — X ¥,
= const (I g, /13, (2-¢)1
+ g Uzq(z—q)'i) I x—
X g, 19 "";HDZ)-

Similarly, for the second-order terms,

%y, 1911,

- iz‘p;)] I, = const llg.ll; 5, (2-g)
X(HX“XHMI ’!¢!|D+“XI!M1 ”\L’ I‘L’u

The third estimate is obtained in the same manner
with the emphasis placed on obtaining the maximum
power on the sup norms. With the same notations the
estimates can be summarized as follows:

I Dz[gc (Xi

I 0ail,

= gl x=z0 Iwly, + 1z Iy —F1)
= const llg, I, (Ix— xl, Iy 2y ﬁ%{z’z
lhx=x M2z iy2ly —¢1,)
In the first-order terms, besides the standard terms
lai- - - 1bii, there also appear expressions like Oai

and Oqii with g, replaced by g/. These are treated as
above. On the other hand,

I ai

and | Oail,

I8 14qca-gr 1 Dxs — X 4 19511
const | g, “47(4-q) hx—=x 2‘0/2
Il Hx—x 1Y 1/2 .

and likewise

1A

A

Il 1aii Ilq = const {lgc!!4q(4,q)—1
x I x f1/2 ﬂx””z ly— Wlm
161, = const lgll44¢a-gr1 1 x— illwlllpll})/z flylii/2

I

1611 [| = const g, ll4, (41
Il e — gl vz iy ~wl|},:2 .
These estimates can be summed up as suggested in

the beginning of the proof to obtain the desired in-
equalities.

Remark 1: In order to show that the interactions
map D, ® My, into itself in a semi-Lipschitz fashion,
take G =g or g,, g = 2 in (ii), and proceed as follows:

” vy - oc (]f j) D@y,
const[| GV — T3, + 11 6 — )3 ,]1/2
constll G llp, 0 (10 lyy, + 1514y,

1l g, + 19000 = Py, + 19—l

const K [ Gll, ( ’(?'})) ( ’( )) Dy Myyy

if &, (5)) and @, (;,-)) are ] in a ball of radius X in
D, & Mgy,,. Taking W, (; )) 0 gives

“GW ® c(f}) .

20N 3 [

= const [ G|, ]]("b’ (5)) :

DMy,
which proves most simply that the interactions map
D, & My, into itself.

1A

IA

+

1A

Remark 2: The estimates in inequalities (20),
(23), and (28) are obtained from (iii) as follows: Take
x =¥ and %,¥ = 0. Using the fact that II'J/“Mx =
const ||y p, We obtain

g J@ = constlg.lly ,
+ g g q-prr I 11321y ”}42 .

From the definition in Eq.(18), [[y@) [ =1+ [¢])*
1¢ [, and l¢t) Il , = J¥ [, which when Placed in the
above gives

&)1 y,, = const (&l ,
+ 18 lggq-gr) @ + 1217372 Jy[3,

as required.
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A Functional Equation in the Theory of Fluids*
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(Received 4 August 1971)
Two functional equations of the form 2(s) — E(s)¢$2(s) = V(s), where s is a complex variable and E(s) and V(s)
are given even polynomials, are solved for the even entire functions { and ¢ which are required to behave like
cosh[as + o(s)] for large |RIs|. Two cases are considered: (i) V of degree zero and E of degree two and (ii) V
of degree eight and E of degree six. In the second case the polynomials must satisfy a condition in order for ¢
and ¢ to have the right asymptotic behavior. These functional equations arise in solving the Percus-Yevick
equation for a mixture of hard spheres with nonadditive diameters.

1. INTRODUCTION

This is a sequel to the paper by Lebowitz and Zo-
mick.! That paper will be referred to below as LZ.
The problem considered in it was that of solving the
Percus-Yevick (PY) integral equation? for a binary
mixture of particles in which the two-body interaction
potential uij(r) between a particle of species i and one
of species j a distance 7 apart is given by

+a 0=7r=R;

, = ,  i,7€11,2f, (1.1)
uzj(’r) 0 o> RH) 7 { }
where
Rys =Rgy = 3(R11 + Ryp) + @, 0.2

with 0= a= 3Ry —Riy)
It was shown by LZ that the solution of the PY equa-
tion for this problem involved a functional equation of
the form

Y2(s) — E(s)92(s) = V(s), (L.3)
where s is a complex variable, E and V are polyno-
mial functions of a given form, but with undetermined
coefficients, and ¢ and ¥ are the unknown functions
(related to the Laplace transforms of certain correla-
tion functions), which are required to be even and en~
tire and to satisfy the asymptotic condition

Inly (s} }N aRls
Inlg(s)] 3—- aRls

where @ is a positive number defined in (1. 2).

as Rls —» ®
) (1.4)
as Rls » — ©

In the present paper we give a method for solving
equations of the form (1) and apply it to the particular
equations of this form which arise in LZ. The solu-
tion for the particular case which refers to the one-
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dimensional hard-rod system with potential (1.1) was
quoted, without derivation, in LZ.

The basic idea of the method can be seen by consider-
ing the case where E(s) = V(s) = 1. Here the equation
reduces to

Y(s)2 — p(s)? =1, (1.5)
which can be written
[W(s) + o(s)][W(s) — ¢(s)] = 1. (1.6)

This shows that both ¥ + ¢ and ¥ — ¢ are entire
functions without zeros and hence must be of the form
explw(s)] and exp[— w(s)], respectively, where w is
entire; it follows that the solution is

¥(s) = coshw(s), ¢(s) = sinhw(s).
The method we shall describe is based on the same
factorization idea, with modifications to allow for the
presence of the polynomials E(s) and V(s) and the

conditions that the functions ¢ and y must be even
and satisfy the asymptotic condition (1. 4).

In the next stage of the calculation we shall use the
following information about the specific form of the
polynomial E(s); it is taken from LZ. The details de-
pend on the number of dimensions of the hard-sphere
system.

A. One Dimension
Equation (1. 3) above corresponds to Eq. (3. 57) of LZ
with

E(s) = s2 — 4p2

{= D(s)/[(p; — p2)2a?] in LZ notation}, (1.7)

Vis) = A, (1.8)



604 JOHN M. CHADAM

Research supported in part by the National Science Foundation

(NSF GP-13627) and the Alfred P. Sloan Foundation.

T On leave from the Department of Mathematics, Indiana
University, Bloomington, Indiana 47401.

1 The v* are the components of the electromagnetic (real) vector
field and ¥ is the Dirac spinor field;i.e.,y is a function from
space~time into a four-dimensional vector space called spin
space. The positive definite inner product in spin space is de-
noted by Y "y and ¢ denotes ¢ *40, The y's are operators in
spin space which satisfy y#y? + y¥yk = 2gW(g00= 1 git = — 1,
gt =0 p = v) and y0* = y0,9 ™ = — yi. All representations of
operators satisfying these properties are unitarily equivalent.
For this work, as usual, no specific choice is required.

2 L.Gross,Commun. Pure Appl. Math. 19, 1 (1966).

I. E. Segal, Ann. Sci. Ecole Norm. Super., Ser 4,1,459 (1968).

4 J.M.Chadam,“Asymptotics for Ju = ni2u + G(x, t,u,u,u,).

I. Global Existence and Decay,” Ann.Scuola Norm. Super. Pisa
(to be published).
5 J.M.Chadam, Paper II of Ref. 4, Ann. Scuola Norm. Super.Pisa
(to be published).

w

6 J.M.Chadam,“Asymptotic Behavior of Equations Arising in
Quantum Theory.” J. Appl. Anal. (to be published).

7 In this work it will be notationally convenient to view the four
component spinor ¥ as a pair of two component spinors.

8 The usual notations for function spaces [e.g., L?(E;) with norm
Il 1,,8(E;), C(E,), etc.] will be used (as above) for the appro-
priate direct sum analog of these spaces when there is no possi-
bility of confusion,

9 The fact that these My are not the standard escalated energy
spaces is a reflection of the requirement that the vector poten-
tials must satisfy Eq. (1c).

10 1. E. Segal, Ann. Math. 78, 339 (1963).

11 T. Kato, J. Math. Soc. Japan 5, 208 (1953).

12 T.Kato, Perlurbation Theory for Linear Operalors (Springer,
New York, 1966), pp. 305-06.

13 J. Bjorken and S. Drell, Relalivislic Quanlum Fields (McGraw-
Hill, New York, 1965). :

14 N. Shenk and D. Thoe, J. Math. Anal. Appl. 31, 81 (1970), Lemma
3. 1.

15 E.g., W. A, Strauss, J. Functional Anal. 2,409 (1968), Lemma 3. 7.

A Functional Equation in the Theory of Fluids*

O.Penrose’and J. L. Lebowitz
Belfer Graduale School of Science, Yeshiva Universily, New York, New York 10033

(Received 4 August 1971)
Two functional equations of the form 2(s) — E(s)¢$2(s) = V(s), where s is a complex variable and E(s) and V(s)
are given even polynomials, are solved for the even entire functions { and ¢ which are required to behave like
cosh[as + o(s)] for large |RIs|. Two cases are considered: (i) V of degree zero and E of degree two and (ii) V
of degree eight and E of degree six. In the second case the polynomials must satisfy a condition in order for ¢
and ¢ to have the right asymptotic behavior. These functional equations arise in solving the Percus-Yevick
equation for a mixture of hard spheres with nonadditive diameters.

1. INTRODUCTION

This is a sequel to the paper by Lebowitz and Zo-
mick.! That paper will be referred to below as LZ.
The problem considered in it was that of solving the
Percus-Yevick (PY) integral equation? for a binary
mixture of particles in which the two-body interaction
potential uij(r) between a particle of species i and one
of species j a distance 7 apart is given by

+a 0=7r=R;

, = ,  i,7€11,2f, (1.1)
uzj(’r) 0 o> RH) 7 { }
where
Rys =Rgy = 3(R11 + Ryp) + @, 0.2

with 0= a= 3Ry —Riy)
It was shown by LZ that the solution of the PY equa-
tion for this problem involved a functional equation of
the form

Y2(s) — E(s)92(s) = V(s), (L.3)
where s is a complex variable, E and V are polyno-
mial functions of a given form, but with undetermined
coefficients, and ¢ and ¥ are the unknown functions
(related to the Laplace transforms of certain correla-
tion functions), which are required to be even and en~
tire and to satisfy the asymptotic condition

Inly (s} }N aRls
Inlg(s)] 3—- aRls

where @ is a positive number defined in (1. 2).

as Rls —» ®
) (1.4)
as Rls » — ©

In the present paper we give a method for solving
equations of the form (1) and apply it to the particular
equations of this form which arise in LZ. The solu-
tion for the particular case which refers to the one-

J.Math, Phys., Vol.13, No. 5, May 1972

dimensional hard-rod system with potential (1.1) was
quoted, without derivation, in LZ.

The basic idea of the method can be seen by consider-
ing the case where E(s) = V(s) = 1. Here the equation
reduces to

Y(s)2 — p(s)? =1, (1.5)
which can be written
[W(s) + o(s)][W(s) — ¢(s)] = 1. (1.6)

This shows that both ¥ + ¢ and ¥ — ¢ are entire
functions without zeros and hence must be of the form
explw(s)] and exp[— w(s)], respectively, where w is
entire; it follows that the solution is

¥(s) = coshw(s), ¢(s) = sinhw(s).
The method we shall describe is based on the same
factorization idea, with modifications to allow for the
presence of the polynomials E(s) and V(s) and the

conditions that the functions ¢ and y must be even
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where p and A are positive numbers.

Our ¥/(s) and ¢(s) correspond to ¥ (s) and [@(s){p; —
py)a] in the notation of LZ.

B. Three Dimensions

Equation (1. 3) corresponds to Eq. (5. 52) of LZ with

E(s) = 86 — 4n(s), (1.9)
V(s) = — h(s)A(s),
where
his) = hlsz + kg

(1.10)

[Eq. (5. 38) of LZ],
and

A(s) = a,s6 + a,s* + azs2 +a, [Eq.(5.43)of LZ ]
Here #{,...,a, are real numbers. This time our
Y(s) and ¢(s) correspond to the Y¥(s) and ¢(s) of LZ.

2. FACTORIZATION OF THE EQUATION

To factorize ¥2 — E ¢2 we define VE(s) to be the
branch of the many-valued function [E (s)}1/2 which is
analytic in the complex s plane with suitable finite
cuts, and which satisfies

VE(s) ~ s? for large s, (2.1)
where p is the number of dimensions. This is pos-
sible because E(s) = s2? + --- both for p = 1 and for
p = 3. Before we proceed, it is worth noting that if
the cuts are synimetrical about the origins, as we
shall choose them to be, then VE is an odd function of
s; for, since E itself is even, the ratio VE(s)/VE(— s)
when squared gives 1 and must therefore equal + 1
or — 1 throughout the cut plane, and Eq. (2. 1) shows
that the value is — 1 both for p =1 and for p = 3.

We can now factorize the left-hand side of (1. 3) by
defining

F(s) = w(s) + VE(s)p(s), (2.2)
Fis) = w(s) —VE(s)¢(s) =f(— s) (2.3)

since VE is odd and ¥ and ¢ are even. Equation (1.3)
now becomes

F(s)f(s) = V{(s)

or

AS) = s) = V(s).

@. 4)
(2.47)

The behavior of f(s) for large s is determined by the
condition (1. 4). This condition, with (2. 2) and (2. 3},
gives

lw(s)l = lf(s) + f s)| = exp[a |RIs| + o(s)],

|Rls|~>®©,  (2.5)
so that either |/(s)| or [f(— s)| (or both) grows at
least as fast as exp[a|RIs] + o(s)] as |Rls] -> ©, Sup-
pose for definiteness that it is f(s) that has this pro-
perty for Rls -» ©;then (2. 4) implies that f(— s) de-
creases exponentially as RIs — % and thus f(s) has to
decrease exponentially as Rls » — ®©. Thus we find
that in this case

as |Rls| — o,

7(s)] ~ exp[aRls + o(s)] (2.6)

The alternative possibility gives a similar result, and
the two can be combined in the single formula

[f(s)| ~ exp[+ aRls + o(s)]

as Rls —» % gndas Rls —> ©, (2.7)
We also want to know how f behaves on the boundary
of the cut plane,i.e.,on the cuts themselves. Each
cut has two sides which we designate the + and the —
side, respectively. If the cut is horizontal, it is con-
venient to take the + side as the top. We define, for
each function F over the cut plane, two boundary-value
functions on each cut,
F(t) = liI’IOIF(t +e€), (eC, (2. 8)
€
the limit being approached from the + side of the cut
C for F* and the — side for F~. For example, since
VE reverses sign as we cross any cut, it satisfies
VE*(t) = —VE(t)

(t e C) (2.9)

Using this in (2. 3), we obtain
fH&) =F"@ and Ft) =)

It follows, by (2. 4), that f satisfies the boundary con-~
dition
() =vi)

(teC). (2.10)

- This equation, together with (2. 7), constitutes a boun-

dary-value problem for determining f, of the type dis-
cussed by Muskhelishvili.3 In the following, we shall
apply his methods to it.

3. THE ONE-DIMENSIONAL CASE

In this case V(¢) is a positive constant A so that the
functional equation reduces to

f(s)f(—s)=A, s c cutplane, (3.1)
and (2. 10) to
FOF =4, te -2 2l (3.2)

There is just one cut now, since VE(s) = V(s2 — 42),
with two branch points.

We shall write (3. 2) in logarithmic form, in terms of

2(s) = Inf(s), 3.3)
but it is necessary first to show that ®(s) is a (single-
valued) function. That is to say, we wish to show that
f(s) never vanishes, and that argf(s) returns to its
original value when s describes any closed contour

in the cut plane. Both facts follow from (3. 1), the
first because f(— s) is holomorphic in the cut plane
and the second because any closed contour in the cut
plane can be deformed either to zero or to a large
circular contour; if it deforms to zero there is no
problem, and if not, both s and — s traverse the same
circle, so that the total change in argf(s) equals the
total change in argf(— s), and since their sum is the
total change in argf(s)f(— s) = argA, i.e., zero, the
total change in argf(s) is also 0. Thus the definition
(3. 3) makes sense; it is only necessary to specify the
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additive multiple of 27i and we do this in such a way
that

®(s) ~ + as + o(s), |RIs]—wm, (3.4)

in conformity with the asymptotic condition (2. 7).
Putting (3. 3) into (3. 2), and using (2. 7), the boundary
condition on the cut takes the form

P+(¢) = ®(¢) = In4A + 2wmi, (3. 5)

where m is some integer.

Boundary-value problems of this form are discussed3
in Sec. 84 of M. Since f(s) is bounded in any finite
region of the cut plane and on its boundaries by (2. 3)]
and is therefore also bounded away from zero [by

(2. 4")], its logarithm ¥(s) is bounded. Thus the solu-~
tions of (3. 4) we are interested in are those which, in
the terminology defined on p. 231 of M, belong to the
class i (— 2y, 2u) (i.e., they are bounded at both ends
of the cut.)

A particular solution of the boundary-value problem
satisfying this condition is the function

L(InA + 2mmq).

The general solution of (3. 5) is obtained from this
particular solution by adding the general solution of
the associated homogeneous equation &+*(f) + &(¢) = 0.
According to the theory describedinSecs. 35 and 79 of
M, this general solution, of finite degree at infinity,is
of the form

X(s)P(s),

where P is a polynomial and X is the “fundamental
solution” of the homogeneous problem. This funda-
mental solution is (see p. M232) the one which is
nowhere zero in the finite part of the plane, including
the cut, except at the two end points — 2p and 2, The
appropriate solution, given in Eq. (84. 3) of M, is VE(s),
and so we have for our general solution

&(s) = 2(Ind + 2mmi) + VE(s)P(s), (3.6)
where P(s) is a polynomial. The condition (3. 4) de-
termines this polynomial as P(s) = + o, and, putting
the resulting formula for ®(s) into (3. 3), we obtain

f(s) = + VA exp[x o VE(s)], 3.7

a formula in which there are two choices of sign.

The solution of the original functional equation for the
one-dimensional case is therefore, by (2. 3),

Y(s) = £ VA coshavE(s), (3.8)

o(s) = + VA[sinhavE (s)|/VE (s), 3.9)

again with two choices of sign. This is the solution
given in Egs. (3. 58) and (3. 59) of LZ.
4, THE THREE-DIMENSIONAL CASE

To deal with this case, we return to the general form
of the boundary-value problem given in (2. 10). Now
E(s) is a polynomial of degree 6. We denote its roots
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by + 4, Sy, 83, with s, and s3 — s, real, and choose
the cuts as shown in Fig. 1.

Another new feature is that now V(f) is a polynomial
of degree 8, so that f(s) and f(— s) must have zeros in
the cut plane or on its boundaries. In fact, if the
zeros of f(s) are 2., 24,23, 24, then those of f(— s) are
—2Zy,— Zy5,— Z3,— 2, and so those of V(s) are + 2z,

+ Zg,% 25, % 24. We assume that V(s) and E (s) have

no zeros in common, so that none of + z;,...,+ z, is
the end of a cut. Let us define

Fls) =£(s) 1 (s — 21 (4.1)
so that, by (2. 10),
FOFEs) = VI [(s—2)s +2) =, (4.2)

where c is the coefficient of s8 in V(s) (it is — ah;
in the notation of L.Z). Thus F satisfies a functional
equation like the one we solved before. The boundary
conditions are

|F(s)| = exp[+ aRls + o(s)] (4.3)
for large |(RIs)|,and
FYOF-(t) = ¢J(t) (€ C), (4. 4)
where 4 a {t+z)
CRMCONT N e R

and C denotes the set of cuts.

Since there are now three cuts, it is not as easy as
before to define a function ® to serve as InF. By con-
sidering the behavior of F(s) as s traverses a large
circle, we can show that argF(s) returns to its origi-
nal value if s traverses a contour that encircles all
three cuts, and, by considering a symmetrical contour
that encloses only the cut through the origin, we can
show that argF(s) returns to its original value as s

s‘.——.——.53
-S2 S2 —S3 ~S1 —82 52 51 S3
Grm—————————)
-s, -8,
FIG.1. Cuts C in the s plane.
+
e ——
< wa‘”k/@ /c; /c
N W‘W«"@‘\c' . /Q \ .
Dy = - - - -
/»f(”’r’/q,”»q / l t'
X »/””’”’», — C1 C1 C2
— g

FIG. 2. Cuts C’ in the s plane.
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traverses any contour enclosing only this cut; but
there is as yet no reason to expect argF(s) to return
to its original value if s traverses a contour that
surrounds one of the other cuts. To deal with this, we
put two further cuts C’ as shown dotted in Fig. 2.

We can now define a function
®(s) = InF(s), (4. 6)
which is holomorphic in the cut plane and satisfies

GH(t) + O (t) = Inc + 2mmi + Ind(¢)
I — O (1) = 2mni (L€ C),

{t € 0, 4.7

where m and n are integers. The reason why we can
use the same value of » on both parts of C’ is that we
know [since F(s)F(— s) = c] that if s traverses a sym-
metrical path enclosing only the part of C containing
the origin, then argF will return to its original value
and so the discontinuities of ® across the two parts

of C’ must be the same.

Equation (4. 7) is again a Hilbert problem, of the type
discussed in Secs.85-87 of M. As before, its general
solution is the sum of a particular solution and the
general solution of the associated homogeneous pro-
blem. For a particular solution, consider the function
[obtained from Eq. M (85. 12)]

®(s) = slnc + mmi +"/E (s) | InJ (t)dt
Zm' C \/E+(t)(t . S)
2nnidt

VE(s)
! 277 fc VE+()(t — s)

,  (4.8)

where the cuts are traversed in the directions indica-
ted in Fig. 2, and their “plus” sides are at the left of
the arrows. The Plemelj formulas (p. M43) show that
this is a particular solution of the boundary-value
problem (4. 7). To get the general solution, we add
X(s)P(s) where P is any polynomial and X is the fun-
damental solution of the class we are looking for. As
before, since we want bounded solutions, this funda-
mental solution is VE(s). Qur asymptotic condition

(4. 3) implies, however, that the polynomial P must be
0, since VE (s) increases like s3,not ¢, for large
I(R1s)]. Thus the particular solution (4. 8) itself is the
one we are looking for.

To get the correct behavior for large s, we want

®(s) ~+ as for large s,

and, since E (s) ~ s3, this implies that the sum of the
two integrals must behave like + 2nio /s2 for large s.
The asympototic behavior of these integrals is obtain-
ed from the formula ({ — s)t = —s1 —fs72 ... and
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80 we require [writing VE(t) as an abbreviation for

VE+(t))

1 InJ()dt a__ 49

21i ¢ VE () o fc VE(t) 9
(coefficient of s1), and

1 ¢ tind(t)dt tdt__ 410

omi fc VE() T fc VE () e (4. 10)

(coefficient of s72).

Now, Eq. (4.5) shows that InJ{!) is an odd function;
hence, the first integral in (4. 9) is zero. The second
can be written

dt dt
Jey Ty

: 4.11
G VE(t) @1

The sides of the contours on which the integrand is
evaluated are indicated in Fig. 2, and are symmetri-
cal. Since VE(s) is an odd function, it follows that the
two integrals reinforce and so [barring the accident
f dt/VE(t) = 0] the condition (4.9) can only be satis-
fied by taking n = 0. The second condition, (4. 10),
now reduces to

1 o tInd(t)dt
2ni °C

VE ()

a =% , (4. 12)

which imposes a condition on the coefficients %, ...,
a4 in the polynomials E(s) and V(s).

The solution of the functional equation for f is, by
(4.6) and (4. 1),

fls) == \/Ci?;ll (s — zi){exp ‘/EZT(rj‘) fc \/E}r(l;;g)its)}
| (4.13)

There are several solutions, depending upon the
choice of the sign in (4. 13) and which four zeros of V
we pick to use as z,,...,%2,. We expect that,as in the
one-dimensional case, physical requirements will
dictate a unique choice. This will certainly be true at
low densities where the PY solution can be found
from a convergent virial expansion.? At higher den-
sities we expect to see a phase transition correspond-
ing to a spatial separation of the two components
since a in (1. 2) is positive. We plan to investigate
this further.
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For a system which may be partitioned into M subsystems A, A,,...,A4,, such that configurations of subsys-
tems Ai,Aj correspond to realizations of discrete, random variables s,, s;, not necessarily isomorphic, and such

that the probability for a configuration of the total system is p(s,, s, .

£5(S;, S9)* - <81 (8y-1, Spr), we prove that p(s,, s, ..

ooy Sy) = f1s0) e fulsdEy (s, s ) %

v Sp) = Py (8115500, (85) 83+« py 1 (8,11 830Dy (8,,), where

Pi{8;15;.1) is the conditional probability for s; given s, 4, and p;(s,) is the reduced probability for $;. This result
vields a decomposition of the total entropy into “single- subsystem entropies” — 2, pi(s;) Inpy(s;) and “nearest-
neighbor” cumulant-like terms — F3p.(s,, 5,,,) In[p,(s), 8.1 }/P,(s) b1 (8,4 )] only. This Markovian decomposition
applies to systems with short-range interactions for which transfer-matrix methods are introduced.

1, INTRODUCTION

This paper deals with an aspect of the decomposition
of entropy of physical systems. Attention is directed
to the way in which the entropy depends on a very
limited subset of correlations which exist in a class
of systems described in terms of transfer matrices.!
The Markovian decomposition demonstrated for
chainlike interactions is admittedly so intuitively
clear? and mathematically direct that to present it in
a separate note may seem questionable; however, we
believe that the result is not well known in the pre-
sent context, and the recent appearance 3—6 of en-
tropy and correlation inequalities may suggest some
new approximations for unsolved problems.

2. DEFINITIONS AND RESULTS

Consider a system which may be partitioned into M
subsystems A, A,, ..., Ay, such that the configura-
tions of subsystems 4; and 4; correspond to the pos-
sible realizations of discrete random variables s;

and s;, respectively. For example, s; might have only
two realizations + 1; whereas, S;,; might have 3%*
realizations so that s; might be associated with a
single spin 3 and s;,, might be associated with an
entire N2-spin plane of spin 1 particles. Let the
probability p(s, S, ..., s,) for the joint realization of
a set of values s;, S, .. -, s,, denote the probability for
a configuration of the total system and vice versa,
and assume that

P(Sl, Soy e *?gy]) :fl(sl)fz(sg)' : -fM(sM)gl(sl, Sg)
X 8o(Sg, 83) &y 1(Sar15 )y (B

where f;(s;) and g,(s;, s;.;) are positive-valued func-
tions. A trivial example of a joint probability with
the above structure is [exp(— BH)]/Z, where H is the
Hamiltonian for a linear chain of spins with nearest-
neighbor interactions (Ising); each spin in a magnetic
field.  The canonical partition function is denoted by
Z. The spins need not have the same magnitude and
the interaction parameters J; and the field para-
meters #;,7 = 1,2, ..., M may change in sign and
magnitude as 7 takes on different values.

Introduce the reduced probabilities

Pi(si, Sie1) = E P(S15 895 - - +5 Sa)s (2)
[i,i+ 1]
Pier(Sicq) =20 sy Siuq), (3

where 2 i, i+ 1} means sum over all configurations s,
Sy, .« 4+, Sy With §;, 5, , fixed. In the usual notation the
conditional probability for s; given s;,, is

ﬁi(sil Siy 1) = p;{s;, Spe 1)/1’,4 1(35+ 1) . {4)
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Theorem: Under the conditions stated above,

p(Sl, 829 veay SM) :ﬁ1(51§32)p2(32§ 53)' Al

Xl’M_l(sM—llsM)pM(sM)' (5

Pyoof: Let s, denote the realizations of s; and
understand that when % is preceded by 7, # may take
on integer values 1, 2, ..., through a largest value
L{7). Introduce matrices

F; = diag[fi(s,‘l),fifsig), v ’fz‘(SiL(i))L (6)

£i(S5,15 Sis1,1) &i(S;, 15 S, 1. (i )

G, = j . ™M

8i(81, 101y Siv1,1) 88y 1oy St 1,06+ 1)

Alternatively, a matrix element of, say, G; will be
denoted by ¢s;1G;!s,, ).

Then

bylsys8p) = (571G | 80 (s | Fy s (s, Fyl sy

X2 <32thF3631 4" ‘GM&]M‘SM%
S
M

pz(sz) = <52!F21 52> E <31!F1G1I 52>

1
X2 (851GoF3GoF - + - Gy 1 Fyl sy,
Sm

D5(85,85) = (551G, 1850 (s, | Pyl s,) (s, 1 Fy | sy)
x2; (s;1F,G,ls) 23 <52‘("3F4G4I‘15' <Gy 1Fyl 83,
5 Sm

Py(sy) = (831 F5ls3) 20 (s, | FYG FGyl sy)
k X2 (83| GyF G yF s - "Gy Bl i
Sm

Prat Spyeq) = (Speq | Fypg b spy)

X E <31 lFlGlFZG e Gm-z ‘ SM'1> Z} <SM<11 GM— 1FM‘ SM>’
5y S a1
Doz 1(Su-15 Sp) = (Sp=1 1Gyoq I8
X (Spy | Fyyoy I spyep) (3 Fy | Sy

X2 sy | FIG i FyGy Gy pl sy 1).
S
1

Note that Eq. (4) implies that

Prg=10830-15 Spr) = Prae1 Sng- 1) Sy W2 (S p)-
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One finds that with the above relations the product on
the right-hand side of Eq. (5) telescopes into the form
given in Eq. (1), and the theorem is thus proved.

An equivalent statement of Eq. (5) is

P( ]‘) ]‘+1)
)) (®)

1
p(sl,sz,..., ) = ﬂpz(s) (W

which implies that the entropy takes the form

- E 1)(31,82)"')

S]"“‘Sbﬁ’

= — Z; E pi(si) ]-npi(si)
-2 pj(sj, s].+1) 1n< (J’_NJ)__ > (9)

7 s Pj(%‘)ﬁjﬂ( j«»]_)

Sy) Inp(sy, Sy, ..ty Sp1)

Thus, for systems under consideration the entropy
containg only “single-subsystem entropies” and
“nearest neighbor,” cumulantlike4 terms even though
the system itself may exhibit statistical dependence
between s, and s, for m =1 + 1.

Notice that for any Hamiltonian sy, S,, . . ., Sy),
which does not necessarily yield to transfer-matrix
formalism, the Gibbs—Bogoliubov variational

theorem® implies that the exact free energy

F= 7

Sl,.- . ’SJU

sy + kT Inp(s 1,5 5,0 . 5],

) (10)
where p(S;, 8, ..., Sy) is any “trial” probability func-
tion; thus, for p one may use the rlght hand side of
Eq. (8) and determine p;(s;)and p (s, S;.1) by functional
variation.

P(sy, 89,40,

The single-subsystem entropies can also be bounded
as is indicated in the following example. Consider a
case for which s, denotes a random variable having
2¥ realization corresponding to the states of a chain
of N spin—é particles each with an associated random
variable 0; = + 1. The entropy contribution of the
chain? is

N
~ZP(81 Inp(s,) ZIZMO Inp;(v;) (11)

but the right-hand side?

= N 12— 2[3(1 + <o) In(1 + {g;))
; +3(1 (o)) m(1 —{o))], (12)

which is a monotone, nonincreasing, convex function
of {g, 7.

1 See,e.g., the lecture notes of E. H. Lieb in Lectures in Theoveli-
cal Physics, edited by K. T.Mahanthappa and W. E. Brittin (Gor-
don and Breach, New York, 1969), Vol. XI-D, p. 329.

2 M.S. Bartlett, An Inlvoduction to Stochastic Processes (Cam-
bridge U. P., London, 1962), p, 34.

3 H.Araki and E.H. Lieb, Commun. Math. Phys. 18, 160 (1970).

4 H.Falk and M. Suzuki, Phys.Rev. B 1, 3051 (1970); B 3, 228 (1971);
H.Falk J. Math. Phys. 12, 1492 (1971).

5 C.J. Thompson, “Upper Bounds for Ising Model Correlation
Functions,” Commun. Math. Phys. (to be published).

6 See,e.g.,H. Falk, Amer.J. Phys. 38, 858 (1970). The work of
George Woodbury,Jr. [J.Chem. Phys.47,270 (1967)] contains a
reformulation of various lattice free energy approximations by
entropy decomposition methods. I am indebted to Professor Ben
Widom for this very relevant reference.

This and other entropy bounds will be found in Refs. 3 and 6.

Nonrelativistic Time-Dependent Scattering Theory and von Neumann Algebras.
I. Single Channel Scattering
W.W. Zachary

Naval Reseavch Labovalovy, Washinglon, D.C. 20390
(Received 11 May 1971; Revised Manuscript Received 29 November 1971)

For single-channel nonrelativistic time-dependent scattering we analyze the von Neumann algebras 91, generat-
ed by the wave operators @ _and the algebra ® generated by the spectral projections of both the total and free

Hamiltonians. Each of the algebras I, is the direct sum of an Abelian algebra and a factor of type I

, but both

summands need not occur. For a large class of central potentials @ is the direct sum of a countable number of
factors of type I_ and its commutant the direct sum of a countable number of finite factors of type 1. In the
latter case the type of each direct summand is uniquely determined by the angular momentum of the correspond-
ing partial wave. Similar decompositions are obtained for algebras related to 3 and ' in a natural way that
have certain connections with the absolutely continuous and point spectra of the total Hamiltonian, The struc-
ture of some algebras related to 9N, is connected with certain properties of the bound states.

I. INTRODUCTION

A precise formulation of time-dependent single-
channel scattering theory was given by Jauch?! in
which necessary conditions were stated for the ex-
istence of “simple scattering systems.” The central
constructs in this theory are the operators defined
by the following strong limits on the Hilbert space
L2(R3):

Q(tM) = g-lim eitHe-itilg, (1)

b 300

where the self-adjoint operators H and H, denote,
respectively, the total and free Hamiltonians.

The existence of the limits (1) has been established
for short range potentials2 in which case the corres-
ponding operators are precisely the Mgller wave
operators. For long range potentials such as the
Coulomb potential, the limits in (1) do not exist. In
this case it has been shown3:4 that new operators

can be found which have the same physical interpre-
tation as the Mgller operators (1). Similar results
have been obtained for other long range potentials.4—8

Following this idea, several authors?-10 have defined
new asymptotic conditions for the single channel case
which replace the Mg¢ller operators by operators
which exist under more general conditions, i.e., for a
wider class of potentials,

J. Math, Phys., Vol. 13, No. 5, May 1972



ENTROPY DECOMPOSITION 609

One finds that with the above relations the product on
the right-hand side of Eq. (5) telescopes into the form
given in Eq. (1), and the theorem is thus proved.

An equivalent statement of Eq. (5) is

P( ]‘) ]‘+1)
)) (®)

1
p(sl,sz,..., ) = ﬂpz(s) (W

which implies that the entropy takes the form

- E 1)(31,82)"')

S]"“‘Sbﬁ’

= — Z; E pi(si) ]-npi(si)
-2 pj(sj, s].+1) 1n< (J’_NJ)__ > (9)

7 s Pj(%‘)ﬁjﬂ( j«»]_)

Sy) Inp(sy, Sy, ..ty Sp1)

Thus, for systems under consideration the entropy
containg only “single-subsystem entropies” and
“nearest neighbor,” cumulantlike4 terms even though
the system itself may exhibit statistical dependence
between s, and s, for m =1 + 1.

Notice that for any Hamiltonian sy, S,, . . ., Sy),
which does not necessarily yield to transfer-matrix
formalism, the Gibbs—Bogoliubov variational

theorem® implies that the exact free energy

F= 7

Sl,.- . ’SJU

sy + kT Inp(s 1,5 5,0 . 5],

) (10)
where p(S;, 8, ..., Sy) is any “trial” probability func-
tion; thus, for p one may use the rlght hand side of
Eq. (8) and determine p;(s;)and p (s, S;.1) by functional
variation.

P(sy, 89,40,

The single-subsystem entropies can also be bounded
as is indicated in the following example. Consider a
case for which s, denotes a random variable having
2¥ realization corresponding to the states of a chain
of N spin—é particles each with an associated random
variable 0; = + 1. The entropy contribution of the
chain? is

N
~ZP(81 Inp(s,) ZIZMO Inp;(v;) (11)

but the right-hand side?

= N 12— 2[3(1 + <o) In(1 + {g;))
; +3(1 (o)) m(1 —{o))], (12)

which is a monotone, nonincreasing, convex function
of {g, 7.

1 See,e.g., the lecture notes of E. H. Lieb in Lectures in Theoveli-
cal Physics, edited by K. T.Mahanthappa and W. E. Brittin (Gor-
don and Breach, New York, 1969), Vol. XI-D, p. 329.

2 M.S. Bartlett, An Inlvoduction to Stochastic Processes (Cam-
bridge U. P., London, 1962), p, 34.

3 H.Araki and E.H. Lieb, Commun. Math. Phys. 18, 160 (1970).

4 H.Falk and M. Suzuki, Phys.Rev. B 1, 3051 (1970); B 3, 228 (1971);
H.Falk J. Math. Phys. 12, 1492 (1971).

5 C.J. Thompson, “Upper Bounds for Ising Model Correlation
Functions,” Commun. Math. Phys. (to be published).

6 See,e.g.,H. Falk, Amer.J. Phys. 38, 858 (1970). The work of
George Woodbury,Jr. [J.Chem. Phys.47,270 (1967)] contains a
reformulation of various lattice free energy approximations by
entropy decomposition methods. I am indebted to Professor Ben
Widom for this very relevant reference.

This and other entropy bounds will be found in Refs. 3 and 6.
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For single-channel nonrelativistic time-dependent scattering we analyze the von Neumann algebras 91, generat-
ed by the wave operators @ _and the algebra ® generated by the spectral projections of both the total and free

Hamiltonians. Each of the algebras I, is the direct sum of an Abelian algebra and a factor of type I

, but both

summands need not occur. For a large class of central potentials @ is the direct sum of a countable number of
factors of type I_ and its commutant the direct sum of a countable number of finite factors of type 1. In the
latter case the type of each direct summand is uniquely determined by the angular momentum of the correspond-
ing partial wave. Similar decompositions are obtained for algebras related to 3 and ' in a natural way that
have certain connections with the absolutely continuous and point spectra of the total Hamiltonian, The struc-
ture of some algebras related to 9N, is connected with certain properties of the bound states.

I. INTRODUCTION

A precise formulation of time-dependent single-
channel scattering theory was given by Jauch?! in
which necessary conditions were stated for the ex-
istence of “simple scattering systems.” The central
constructs in this theory are the operators defined
by the following strong limits on the Hilbert space
L2(R3):

Q(tM) = g-lim eitHe-itilg, (1)

b 300

where the self-adjoint operators H and H, denote,
respectively, the total and free Hamiltonians.

The existence of the limits (1) has been established
for short range potentials2 in which case the corres-
ponding operators are precisely the Mgller wave
operators. For long range potentials such as the
Coulomb potential, the limits in (1) do not exist. In
this case it has been shown3:4 that new operators

can be found which have the same physical interpre-
tation as the Mgller operators (1). Similar results
have been obtained for other long range potentials.4—8

Following this idea, several authors?-10 have defined
new asymptotic conditions for the single channel case
which replace the Mg¢ller operators by operators
which exist under more general conditions, i.e., for a
wider class of potentials,
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In discussing these new asymptotic conditions certain
von Neumann (W*) and C*-algebras have made their
appearance. In the case of von Neumann algebrasl!
among those occurring are the algebras @ and @
which are defined, respectively, as the algebras
generated by the spectral projections of H and of Hg,
the total and free Hamiltonians. The algebra @/, the
commutant of €, has proved especially useful in the
study of the limits for infinite time of certain obser-
vables,8

These algebras are not adequate, however, for the
discussion of the particle interactions which occur
at finite times. For this purpose one wanis algebras
that contain the wave operators. Neither @ nor C
have this property except in trivial cases. Our ob-
jective in the present paper is to discuss certain von
Neumann algebras whicl: contain the wave operators.
These are the algebras O , generated by Q,,

m, = {‘Qt }”7 (2)

which are the smallest von Neumann algebras, re-
spectively, that contain &, and Q% and the algebra ®
generated by the spectral projections of both H and
Hy,l.e., the smallest von Neumann algebra containing
both Abelian algebras @&, C,

® =1{a, e}". (3)

We will be concerned specifically with the problem of
classifying O, and @ and certain related algebras
according to type and other properties, and will con-
fine ourselves to the case of single channel scatter-
ing. Multichannel scattering will be discussed in a
future paper. Our program for time-dependent scat-
tering theory is analogous to certain developments in
the algebraic formulations of statistical mechanics
and quantum field theory,12 namely, the analysis of
certain algebraic structures which are thought to
characterize the theory in some fashion,

In Sec.II we formulate the theory of single-channel
time-dependent scattering and also give a brief
summary of ‘some required results from the theory
of von Neumann algebras. Then in Sec.IIl we discuss
some results concerning the algebras & and &’ which,
for rotationally invariant scattering systems, deter-
mine their direct sum decompositions into factors of
known types. Section IV is devoted to the discussion
of certain algebras related to 9, and ®. The proper-
ties of these algebras are related to certain charac-
teristics of the bound states,

For purposes of convenience in the presentation both
signs in @, and M, are discussed simultaneously.

IO. FORMULATION

The most important case of single channel scatter-
ing occurs in the problem of the interaction of two
nonrelativistic spinless particles. Consider the
Hilbert space 3 = L2(R3), then the Hamiltonian
operator, after separation of the center of mass, is
formally given by

H:H0+V) (4)

where, in suitable units, H, = — A and V is an opera-
tor corresponding to multiplication by a real-valued
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local potential. The essential self-adjointness of H
was established by Katol3 for potentials V(x) which
are locally square integrable and bounded at infinity,

V(x) € L2(R3) + L™(R3). (5)

Hereafter, except for the discussion of Proposition 1
in Sec.IH, we will follow the usual practice of re-
placing H and H, by their unique self-adjoint ex-
tensions without changing the notation. Simon® has
discussed self-adjointness proofs under weaker con-
ditions. In this case the definition of the Hamiltonian
by an operator sum as in (4) is given up, Simon de-
fines it instead in terms of quadratic forms.

We will be concerned with the isometric operators
2, , which satisfy
Qfe, =1, QQ*=p, (6)
where P, denote the projections onto the respective
ranges R, of §,, which are subspaces (closed linear
manifolds) of L2(R3). For short range potentials ,

are the Mgller wave operators defined by (1). This
is true for real-valued V(x) which are

(1) locally square integrable and
(i) O([x|8) for some g > 1 as |x|— ®, 1)

i,e., for locally square integrable potentials that
decrease at infinity faster than the Coulomb potential.Z2

For long range potentials the limits (1) do not exist
but, for certain classes of such potentials, new “re-
normalized” operators can be defined which have
the properties (8).779

We denote by P the projection onto the subspace X,,
the absolutely continuous subspace of ¥ = L2(R3)
with respect to H. Hereafter, we will consider the
symbols €, to denote the “renormalized” wave
operators?~9 as well as the Mgller operators (1) if
the context allows the existence of the latter. The
equality P, = P_ is called the unitarity condition and
is equivalent to the unitarity of the S operator,! § =
Q* .. An important condition which one wants the
scattering system to satisfy is that of asymptotic
completeness. This requiresthe equalities P, = P =
P as well as the absence of the singular continuous
subspace of X relative to H, and eliminates certain
pathological states which have the properties of
neither scattering nor bound states. Sufficient con-
ditions on the potential for both unitarity and asym-
totic completeness have been given.2,6,8,14

We now want to summarize a few standard results
of the theory of von Neumann algebrasl? in the con-
text of two-body scattering theory. The algebras @
and € have already been defined in the introduction.
We now further note that G(resp.@) consists of all
essentially bounded measurable functions of H (resp.
H) in the sense of the functional calculus. 15 The
algebra ® is defined by (3), or equivalently (Ref. 11,
p.2),its commutant is given by

®'=a'Nn e, (8)

Given a von Neumann algebra 3 on a Hilbert space X
one can form other von Neumann algebras by the
process now to be described (Ref. 11, Section 1. 2).
For a nonzero projection G € 3 denote by TN, the
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restriction of GG to GX. Then, %, and ('), =
(9g) = 0} are von Neumann algebras. Let 3 de-
note the center of M (i.e., 3 = 9 N ) then the
center of 3 is 3c- In particular, if 3N is a factor

(3 = {AI}), then so is M. For a projection G € N

the central carrier (also central cover or central
support) of G is defined as the minimal projection

G’ € 3 such that G = G'. We will frequently use the
result that G € 9 implies that Jl; and 3, are
s-isomorphic (Ref.11,p. 18, Proposition 2). In the
following two sections we will make use of the classi-
fication into types of von Neumann algebras (Ref. 11,
Section 1. 8), especially the classification of factors.
There are three types of factors, called I,1I, and III,
of which only type I will occur in this paper. Type I
factors are *-isomorphic to £(X), the algebra of all
bounded operators on some Hilbert space X. If X is
n dimensional, n < © then one speaks of type I,
factors, and if it is infinite dimensional (separable) of
type I, factors.

We will also make use of the concept of equivalence
classes of projections due to Murray and von Neu-
mann (Ref, 11, pp. 215 ff). Two projections E and F
belonging to a von Neumann algebra I are equivalent
relative to M, E ~ F,if there exists a partially iso-
metric operator U € 9 such that U* U = E and UU* =
F. A projection is infinite if it is equivalent to a
proper subprojection of itself; otherwise it is finite,
A von Neumann algebra 9 is finite (infinite) if the
identity operator is finite (infinite) relative to I,

It follows from (1) or the corresponding formulation
of the asymptotic condition for long range interac-
tions7~? and the von Neumann density theorem (Ref.
11, p. 41, Théoréme 2) that the wave operators be-
long to . Then, from the definition of 9N, by (2), one
easily shows that M, € Gor equlvalently, G C o,
From this result and (6) we see that P, ~ [ relative
to O, and G, the equivalences being 1mp1emented by

It follows that P~ P and that the only projection
in the center of ® (or centers of M, ) that majorizes
these projections is the identity. These equivalences
also imply that the following pairs of algebras are
spatially isomorphic (Ref.11 p 9) by means of Q,:
(G, O1) ), (8, B ), O, 01, ), and (6, B ). In
view of these spatlal 1somorphlsms we will not dis-
cuss the algebras (O1L,),, and @p _or their commut-
ants in Sec.IIl and IV.

For the short range potentials (7) and for many long
range potentials one has the majorizations

p, = P. 9)

In this case it can easily be shown from either of the
equivalences P, ~ I that P ~ I relative to ®. In this
case the algebras (Bpi, ®p,and G are all spatially

isomorphic as are also the algebras (BP ,8p, and @',

In general we do not know that P € O, unless, of
course,P = P and/or P = P. This statement is re-
lated to the fact that, in general, 9, # @, which will
be discussed in Sec.IV.

According to (2) and (6) the algebras O, are generat-
ed by the isometries 2_. It follows from results of
Suzukil® that 9, have the following direct sum de-
compositions:

mt — (gnr)clxp on t)Gt’ (10)

where G, and G; are central projections in U, ,
(M), are Abelian algebras and (O, )+ are factors
of type I . Here we have denoted by Gy = I —G, the
respectwe orthocomplements of G, Hereafter we
will use this notation also for arb1trary projections,
The subspaces onto which G, and G} project,are
defined byl$

o0
G, = 0O (@),

]

25 ©Q,)"RY, (11)
7=0

GLie =

where R} denote the orthogonal complements of the
respective ranges of Q,. We will refer to (10) as the
Suzuki decompositions of M, . It should be emphasiz-
ed that both summands need not be present in (10).
For example, the factor summands are absent if the
wave operators , are unitary. Lavinel4 gives ex-
amples of nontrivial repulsive potentials for which
QWD exist and are unitary.

. SOME RESULTS CONCERNING &

We begin with a result which gives a slightly dif-
ferent characterization of ® than the original defini-
tion (3), but which one intuitively expects. In the proof
we must distinguish between the formal operators

H, and H in (4) and their (unique) self-adjoint exten-
sions, which we denote respectively by H, and H.

Proposilion 1: Let V be a potential operator in (4)
corresponding to a local potential (function) satisfying
(5). Then V is self-adioint on the dense domain [in
L2(R3)]D(V) 2 D(H,) and ® is generated by the spect-

ral projections of H0 and V.

Proof: For the assumed potentials Kato!3 proved
the essential self-adjointness of H and, further, that
V is self-adjoint with domain D(V) dense in L2(R3)
and that the respective unique self-adjoint extensions
f,H, of H and H, satisfy

H=Hy+V

on the dense domain D(H,) of L2(R3) with D(H) =
D(H,) < D(V). In the present notation (3) states that
@ is generated by the spectral projections of H, and
H. Let 3 denote the von Neumann algebra generated
by the spectral projections of H0 and V. Then one
shows by standard arguments that 31 = @,

This theorem holds even for constant potentials in
which case D(V) is all of L2(R3). In these cases,
however, one obtains either from (3) or Proposition 1
that & coincides with the Abelian algebras @ and ©.
For these potentials the Mgller operators (1) do not
exist but the renormalized wave operators do and
satisfy @, = I8 so that no scattering occurs. For
this reason we will exclude these potentials from
further consideration.

We now return to the notation used prior to the state-
ment of Proposition 1, wherein H and H,, denote the
unique self-adjoint extenswns of the operators in (4)
(H and H0 in Proposition 1). Also, for most of the
remainder of the paper we will restmct ourselves to
the case of rotationally invariant scattering systems
so that the potential is central (spherically symme-
tric),17 V) = V(Ix|) = V(r). In this case proofs of
the existence and unitarity of the Mgller operators
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have been given for potentials that may be more
singular as »— 0 than allowed by the conditions (7).18
These singularities are of the same type as those
considered by Simoné for potentials that are not
necessarily spherically symmetric.

For central potentials it is well known that the
Hilbert space L2Z(R3) can be decomposed in the form

0 I
X 24 DX, 12)
=0 m=-1
where each ¥, reduces both H and H; and con-
sists of elements of the form
rlu@r)Y,™ (6, @), (13)

in which Y, denote the spherical harmonics and

e L2(0, °°) For ! = 0 one imposes the boundary
condition #(0) = 0. Let @,, denote the respective
projections onto the subspaces ¥,;,, . Then the re-
strictions of HQ,,, = Q,,# and H,Q,, =Q, H, to 3¢,
denoted hereafter by H,, and (H,),,, , respectively,

are unitarily equivalent to the respective ordinary
differential operators in L2(0,~):

—@ L1+ 1p2+ V) and
dr2 dr

—d2
+ (1 + 1p2,
2 (14)

For the results to follow, we will want to assume that
the differential operators (14) have simple spectrum
on (0, ©). For continuous central potentials satisfy-
ing (7) this is known to be the case.19 It also holds
for the following class of central potentials introduc-
ed by Weidmann.20 Assume that there exist real num-
bers C > 0, R > 0,and s < 3 such that

l=cC (15a)

rs|V(r) forr <R,

V@)l =C  forv =R, (15b)

and forr = R,

Vir) = V,ilr) + Vy(),

where V, (») is of bounded variation and

rlil)l;rg Vir)=0,
We note that for central potentials V(r) satisfying
(7), (15a) holds as » = 0 and V(r) € L1(R, ) for all
positive R. Furthermore, Weidmann's class admits
certain long range central potentials.

Volr) € L1(R,0).

Now we have

Lemma 1: Consider central potentials V() = 0
satisfying (5) such that the operators (14) have simple
spectrum and the corresponding wave operators §2,
exist and satisfy the intertwining relations,

ey = Q, etlht (16)
for all real finite values of {. Then for each ! and m,
1=0,1,2,---, Iml =1, ®g,, and By —are factors

of respective types I and I,.

For the short range potentials (7) the intertwining
relations (16) are automatically satisfied.»2 In the
case of long range potentials conditions for the vali-
dity of (16) have been given.7~? These conditions
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exclude nonzero constant potentials and admit certain
classes of nontrivial long range potentials,5,7~9

Proof: Because V(») satisfies (5),the Hamilton-
ian is self-adjoint,as we noted in Proposition 1. Since
each ¥, reduces both H and H, we have, from (8),

@ € B 7
generate the respective
(Ref. 11, p. 16,

Proposition 1) and are unitarily equivalent to the re-

spective operators (14) and so, using the hypothesis,

have simple spectrum. It follows that (IQZ and eQz
m m

The operators K,
von Neumann algebras @le

and (Ho)lm
and @Q
im

are maximal Abelian.15 From this one easily shows
that the algebras @bl | are Abelian and that
W

(Bé - c @Q . n @sz (18)
Now let A be an arbitrary operator in (B' . Then,
from (18),

A=f(H,,)=g(Hy),, (19)

for suitable essentially bounded measurable functions
J/ and g in the sense of the functional calculus.15 For
a given set of values of the pair (I, m) suppose that
the spectral projections of H,,, and (H,),,, commute.
Then, since these operators generate the respective
algebras GQ and €, it follows that these algebras

commute and therefore are equal because they are
each maximal Abelian. Consequently, (BQ is
Abelian. From (14) one finds that if the above com-
mutation property holds for a given value of the pair
(I, m), then it holds for all values of I and m, so that
® is Abelian. We now use (6), (16), and the fact that
all operators appearing in (16) belong to @ to find
etlt — gtilyt for all real finite #, which is a contradic-
tion because V(r) # 0. Consequently, the spectral
projections of H,, and (H),,, do not commute for
any values of the set (I, 7) and (19) is impossible
unless A is a scalar operator. Then, since A is
arbitrary in &, , we have that ®, are factors of

“m
type I;. It follows that ®g,, are irreducible type I
m
factors and, since they are each x -isomorphic to an
algebra of operators in L2(0, «), we conclude that
they are of type I_.

These results enable us to decompose ® and &’ as
orthogonal sums of factors. However, it has not been
shown that @,, € ®,i.e.,that the @,, are central pro-
jections. We now generalize Lemma 1 by showing
that certain combinations of the @,, which corres~
pond to the angular momentum multiplets,are cen-
tral projections of ®&.

Theorvem I: Consider the same potentials as in
Lemma 1 and write @, =23%.,@,,, [ =0,1,2,
Then @, € ® N ® and (BQ and (BQ are factors of

respective types I and 121+1

Proof: From {17) we have @, ¢ ® foralll =0,
1,2,---. It was proved in Lemma 1 that OSQO and
(B’QO are factors of respective types I and I, so
that we restrict our attention to the cases I # 0. The
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algebras 0’»Ql and G, operate on the Hilbert space

3 =224, @ X, and 3,,, consists of elements of

the form (13) Now the generators H,,, and (H,),,,

of each algebra ® Q, are unitarily equivalent to the
m

operators (14), which are seen to be independent of

m. It follows that, for a fixed value of I # 0, each

algebra (BQZ is * -isomorphic to the same algebra
0

which, froanemma 1, can be identified as £(L2(0,%)),
the algebra of all bounded operators on L2(0, ). It
follows that (BQ] can be represented as a (21 + 1) X

(21 + 1) diagonal matrix algebra over £(L2(0, <)) with
equal diagonal elements. It then follows that (BQ is
+-isomorphic to21 £(L2(0, «)) and hence is a factor
of type I

Consider the algebra (Béz for a fixed value I = 0. By
Lemma 1 each @,,, is Abelian relative to & (Ref. 11,
p. 123, Définition 3) and hence also relative to &

(Ref. 11, p. 18). From the first part of the proof &,
isa factor of type I and, therefore, so is 03’ Con-

sequently, each @,,, is minimal relative to 03’ (Ref.

11.p. 123), and it follows that Gy is of type 12;1 (Ref.
11, p. 126).

The proof of the assertions that @, € ® for [ = 1,2, -
follows from the structure of these projections as
diagonal matrix operators with equal diagonal ele-
ments. It then follows that also @, € &, which com-
pletes the proof of the theorem.

This theorem shows that, subject to the stated hypo-
theses,® and ®’ are not factors. We also see that ®
is decomposed as a direct sum of a countable number
of I  factors and that @’ is decomposed as the direct
sum of a I, factor,a I, factor, etc. Incidentally, it
can be shown from this that & and ®’ are of type I.

A von Neumann algebra is said to be properly infinite
if it contains no nonzero finite central projections.

It is seen from Theorem 1 that this is not true for

®’ since each @,,1=10,1,2,--+,is central and finite
relative to ®’. However, we have the following.

Corollary: Consider the same potentials as in
Lemma 1. Then ® is properly infinite.

Proof: Consider an arbitrary nonzero projection
E ¢ ® N ® and suppose that E is finite relative to
®. By Theorem 1, (BQZ is a factor and @ ,¢ & " G’ so
that each @, [ =0,1,2,--- is minimal among the
projections of ® N &’ (Ref. 11, p. 123, Définition 2).
Therefore, for each ! we have either EQ, = 0 or
EQ, = Q. However, since E # 0, K cannot be ortho-
gonal to @, for all values of I. Hence, there exists at
least one value of [, say [, such that Q"o = E. Since

E is finite by hypothesis it follows (Ref. 11, p. 230,
Proposition 2) that an is also finite. This contra-

dicts Theorem 1 so that E cannot be finite. Since E
is an arbitrary nonzero central projection, we con-
clude that ® is properly infinite.

Properly infinite algebras of type I have some in-
teresting properties. We will not go into detail con-
cerning these, but only note one such result. Namely,
for the potentials under consideration, the above re-
sult implies that ® is isomorphic to M,(®), 1=n=w,
the # X n matrix algebra with entries from ®.22

IV. RELATIONS BETWEEN EXISTENCE OF BOUND
STATES AND PROPERTIES OF 9L, and &

We now want to investigate the algebras 9, , defined
by (2), which are generated by the wave operators

.. O, have the Suzuki decompositions (10) so that
they are either Abelian or infinite. If O, are unitary,
then 9N, are Abelian, as we noted in Sec II. Since,
from Theorem 1, each Q, € B N B one easily shows
in this case that (Sl )Qz are isometries which generate

(Emr)ol so that these algebras also have Suzuki de-

compositions analogous to the expressions (10) for
I, . Hence, (m)Ql are also either Abelian or infinite.

One easily shows that 91, are Abelian if and only if
all (Om, )Qz are Abelian. However, the situation can

occur in which 9, are not Abelian but some of the
(CJTIJ)QZ are Abelian. For those cases in which bound

states exist we will show below that, with certain re-
strictions on the potential, the number of Abelian

(‘JTli)Ql is directly related to certain properties of

the bound stafes.

In deriving the results to follow we will consider the
situation in which bound states exist and have finite
multiplicity. The fact that the negative eigenvalues of
H are isolated with finite multiplicity has been proved
under very weak conditions. Thus, it holds when the
potential satisfies (5) and the L™ part approaches
zero as 7 = |x| = .23 Simon® has generalized this
result to potentials that are not necessarily locally
square integrable. The existence of positive eigen-
values can be excluded under fairly mild conditions.24
Thus, the above assumptions do not place essential
restrictions on the potential. The most restrictive of
our assumptions in obtaining the following results
will be that of asymptotic completeness.

We first state a simple preliminary lemma.

Lemma 2: Consider the same potentials as in
Lemma 1. Let E be an arbitrary nonzero projection
of ® or ® and E’ its central carrier. Then for a
given [ =0,1,2,--- either EQ, =0 or @, = E'.

Proof: We have E' < & N &’ and, from Theorem 1
@, is minimal among the central projections of & so
that the projection E’'Q, is either 0 or @,. Now E'Q, =
0 implies £Q, = 0 and E Q,= Q,is equ1va1ent to Qz =
E/

Now we have

H

Theorem 2: Consider the same potentials as in
Lemma 1 and assume that (9) holds. Furthermore,
assume that negative-energy bound states exist, that
each is isolated with finite multiplicity, and that no
positive-energy bound states exist.

(a) Consider a particular valueof [ =0,1,2,---. If
(‘J'Il})Ql are Abelian, then there are no bound states of

angular momentum /. If there are no bound states of
angular momentum ! and asymptotic completeness
holds, then ((m-‘)‘?z are Abelian.

(b) Let F denote the projection onto the subspace
spanned by the eigenfunctions of H and let F’ denote
its central carrier relative to . Let G| denote the
projections corresponding to the respective factor
summands of the Suzuki decompositions of M, [see
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(10)‘]. Then, F’ equals the sum of those @, such that
(‘JTLi)Ql are non-Abelian and F = G < F.

Proof: {a) If (Tmi)Ql are Abelian,then (Qx)Ql are
unitary so that @, = P,. From (9) we have that F and
P, are orthogonal so that F@, = 0 and there are no
bound states of angular mcmentum I. Similarly, if
there are no bound states of angular momentum I,
then @, = F+. From asymptotic completeness we now
find @, = P, so that (Qi)Qz are unitary and (‘.)Tli)Ql are
Abelian.

(b) Since F € ® we have from Lemma 2 that either
F@ =0or @ = F’ for a given value of /. From the
proof of part (a) it is see that (‘JTli)Ql Abelian implies

F@, = 0. Thus, we are interested in those @, for which
Q@ <=<F'. (20)

Denoting the sum of such @, by 7}/ @, we must show
that

F’ =2;)'Ql_ (21)

From the above argument we have F = Z};Ql. From
Theorem 1 each @, is central in G so that F’ < 2,/Q,.
Combining this relation with (20), we obtain (21). Con-
sider the projections G} corresponding to the respec-
tive factor summands of the Suzuki decompositions of
IM,. Then we have G4 € M, NIM and @, € M. Let
(@,), denote the respective central carriers of @, re-
lative to OL,. Since G are minimal among the projec-
tions of M, N M, we see that the projections G4{(Q ),
must be either 0 or G;. Consider a value of /,say [,
such that (‘JTli)Ql are Abelian. Since on € M, implies

that (‘JR&)QI areorespectively * -isomorphic to
0
O,) 1, 2We see that the latter algebras are also
o]

Albelian and, therefore, that (@ ,) i, are finite relative
to IM,.

Assume that Gi(Qi)l0 = G} This means G| = (Qi)lo
which implies that G} are finite relative to 9, (Ref.
11, p. 230, Proposition 2). This is a contradiction
because (O, ); +are factors of type L. Thus, we con-
clude that G1(Q,), = 0 for ! such that (‘mi)Q[ are
Abelian. This implies that

Gt <E’Ql>i =0=G}F"*
{

or
G =F, (22)

which was to be proved. If (0, )y, are non-Abelian
for all values of /,then F’ = I so that (22) is trivially
satisfied. We complete the proof of Theorem 2 by
noting that F = G+ follows directly from (11) and the
orthogonality of ' and P,.

For short range potentials we can now give some re-
sults relating the properties of the algebras (‘JII)Q
to the potential range. L

Corollary: Consider the same hypotheses as in
Theorem 2 and in addition assume that asymptotic
completeness holds.

(a) Suppose that
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fooole(r)Id’r< o, (23)

Then there exists a value of angular momentum 1,
such that (‘JTli)Ql are Abelian for all I > (.

(b) Suppose that V(r) is everywhere attractive, V(r) =
— |V(»)], and that at least one of the following con-
ditions is satisfied for given angular momentum L:

R s 21+1 o0 I's ’(2L+1)
fo dr v V{r) <E> — fR dr v Vr) <1€)

= 2L + 1,

-R fo‘” dv V(r) [(1%)'%_ (9 zLRZV(y)}’l > 1,(24)

where R denotes an arbitrary positive constant. Then
(smi)Ql are non-Abelian for all I = L. Here we,of

course, assume that each of the integrals in (24) ex-
ists and is finite.

Proof: (a) I (23) holds, then it is well known that
the number of bound states is finite and that a value
of angular momentum exists, say [, , such that no
bound states exist for /> [, .25 The result now fol-
lows from part (a) of Theorem 2.

(b) It was shown by Calogero26 that each of the con-
ditions (24) guarantees the existence of at least one
bound state for each I = I.. We again use part (a) of
Theorem 2.

We now make some remarks concerning Theorem 2
and also derive some further conclusions for the
assumed class of potentials. The relation (21) defines
decompositions of ® and (B;T, as direct sums of
factors,

(BF/ = IEI(BQI’ 633’«‘/ - lE,G‘)’/l, (25)

the type of each of which is known from Theorem 1.
However, the von Neumann algebras most directly
associated with the totality of bound states are &
and G%. Since F' € ® we have that &% is +-isomor-
phic to &%,. Combining this result with parts (a) and
(b) of Theorem 2, one deduces that if bound states
exist for each angular momentum ! = 0,1, 2, -, then
®% is *-isomorphic to B’. The algebra G, is in-
finite since ® is properly infinite (Corollary to
Theorem 1). This is also clear from (25) since, from
Theorem 1, each (BQz is a factor of type I.,. More-

over, using the method of proof of the above-noted
corollary, one shows that B, is properly infinite. We
can also see that, contrary to the situation for their
commutants, &, and &, are in general no/ isomor-
phic because &, may be finite. An example of this
situation is the case in which a finite number of s-
wave bound states exist but no others. Then one finds
F' = Q, so that ®% is a factor of type I; and, there-
fore, ® is a factor of type 1, where p equals the
number of bound states. In general, of course, where
bound states of more than one value of [ exist, G, is
not a factor.

We can obtain an expression for &, somewhat (but
not exactly) analogous to that for &, in (25). From
F = F'=75/Q, we obtain

®p = zE ’@FQI. (26)
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The & Fq, are factors and their commutants are of

type I, ., because of respective *-isomorphisms to
(B'Ql. We note,however, that the projections F@, in

(26) are not central in @ as are the @, in (25).

It was seen above that, in the general case, ® , and
®. are not factors. Our final result shows that,
given certain hypotheses, the situation is different

for (M,), and (O} ), so that,under these conditions,
M, = B. The assumptions needed for the proof of
these assertions are weaker than those invoked to
obtain the previous results (e.g., rotational invariance
is not assumed) but, on the other hand, only a partial
classification of the factors (O, ) is obtained.

Proposilion 2: Consider potentials V(x) satisfying
(5) such that the corresponding wave operators £,
exist and asymptotic completeness holds. Further-
more, assume that » bound states exist,wheren > 0
may be either finite or infinite. If F denotes the pro-
jection onto the subspace spanned by the eigenfunc-
tions of H,then (O), are factors of type I, .

Proof: From asymptotic completeness and (6) we

have F € M. Let F, denote the respective central
carriers of F relative to 9,. Then, since bound states
exist and G} are minimal in 9N N 9, ,we have F, =
G}, using the fact that F = G:. Because F € M, we
have that OR}) are * -isomorphic to (‘Jl“(i’)Fi = (M),

1
It follows from Suzuki's work!6 and standard results
concerning the tensor product of von Neumann alge-
bras (Ref. 11, p. 24) that the factors (0U/)., are re-

spectively isomorphic to the factors £(R f), the alge-
bras of all bounded operators on the orthocomple-
ments of the respective ranges of Q,. Now, using the
hypothesis that » (negative-energy) bound states
exist, asymptotic completeness, and the respective
*-isomorphisms of (M), and (ON}).,, we find that
(9M’) pare factors of type I . :
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Sturm-Liouville systems occupy a very important
place both in classical analysis and physical appli-

cations. Many one- and two-dimensional vibration
problems lead to regular eigenvalue problems of the
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showing the profound similarity that exists between two seemingly unconnected problems: Mathieu's equation
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1. INTRODUCTION

Sturm-Liouville systems occupy a very important
place both in classical analysis and physical appli-

cations. Many one- and two-dimensional vibration
problems lead to regular eigenvalue problems of the
Sturm-Liouville type.l The Schridinger equation in an
infinite domain is a singular Sturm-Liouville system.?
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The aim of this paper is to discuss the asymptotic
behavior of the Sturm-Liouville equation in Liouville
normal form?

d% -
-V =0, (1)

when the continuous function V(x) has the form of an
extremely deep well.

As the one-dimensional Schrodinger equation is
exactly in Liouville normal form, we will use the ter-
minology and concepts of quantum mechanics to give
physical content to our discussion right from the
start. Equation (1) together with endpoint conditions
satisfied at the boundaries of a finite domain, e.g.,

y(0)=y@) =0, 2)

defines a regular Sturm-Liouville system, which in
general has a finite number of negative eigenvalues
and an infinite number of discrete positive eigen-
values, all of which give the bound states for the
motion of a particle in a potential well V(x) of length
7 and infinitely high walls.

In most quantum mechanics problems, the boundary
conditions associated with (1) are

y (& ) finite. (3)

In this case, (1) and (3) define a singular Sturm-
Liouville system, which in general has a discrete
spectrum of negative eigenvalues giving the bound
states, and a continuous spectrum of positive eigen-
values corresponding to the free particles.

The main result of this work is to show that the asymp-
totic behavior of the bound-state solutions is essen-
tially the same for both the regular and singular
Sturm-Liouville systems, provided that the potential
well V(x) is sufficiently deep. This behavior is inde-
pendent of the type of homogeneous boundary condi-
tions associated with the regular problem. Further-
more, the bound-state solutions can be obtained expli-
citly and fairly accurately by using standard pertur-
bation theory.3:4 It should be emphasized that the
asymptotic problem considered cannot be treated by
the classical WKB method because the potential is a
very rapidly varying function of position; it is also one
of the most difficult and expensive problems to solve
with numerical methods because of the extremely
rapid variation of the eigenfunctions in the region
about the minimum of the potential.

As an illustration of the applicability of the method
to a regular system, we have treated Mathieu's equa-
tion and have obtained exactly the first four terms of
the asymptotic series for the eigenvalues due to
Goldstein and Ince.5~8 We also show the accuracy of
the analytic approximations to Mathieu's functions by
a comparison with the “exact” numerical results.?
Although Sips! 0,11 gbtained higher order asymptotic
results than ours, he did so by a special method
developed specifically for Mathieu's equation, while
our method is equally applicable to any equation of
the form (1); furthermore, our results for Mathieu's

J. Math. Phys., Vol. 13, No. 5, May 1972

functions have a much simpler and thus more useful
form than Sips'.

Finally, we give the results obtained for the bound-
state eigenvalues of a Schridinger equation problem
in an infinite domain. In this problem with Morse's
potential,12 the eigenvalues are obtained exactly.
Regardless of accuracy considerations, the results
obtained for the problems discussed show clearly
that the asymptotic behavior of both the regular and
singular Sturm~Liouville systems is essentially the
same.

2, OUTLINE OF THE METHOD

The central idea of this work is to expand the poten-
tial V(x) in a Taylor series about its minimum value,
and solve the resulting approximate problem by stan-
dard perturbation theory. Physically, as the potential
well is very deep, the classical furning points for the
lowest bound states are very close to the minimum
of the well; therefore the particle, even quantum-
mechanically, can in the main “see” only the region
of the potential near the minimum. We thus expect
that the eigenfunctions obtained in this way will only
be accurate in an asymptotically small neighborhood
of the potential minimum; also, for the higher bound
states, as the turning points intersect the potential
well at higher points above the minimum, we expect
that the accuracy of the approximation will decrease
progressively relative to the lowest bound states.

This is indeed confirmed by the explicit results ob-
tained. However, the region about the potential mini-
mum is where the eigenfunctions have appreciable
values; away from it, they are transcendentally small
and in many applications it is adequate to know the
eigenfunctions accurately only where they have non-
negligible values. Furthermore, the eigenvalues ob-
tained by the method are asymptotically accurate
even if the eigenfunctions are not determined accu-
rately in the classically forbidden region outside the
turning points,

3. MATHIEU'S EQUATION

Mathieu's equation arises when solving by separation
of variables the two-dimensional Helmholtz equation
in a domain with an elliptic boundary (Ref. 1, p. 391).

In standard form, Mathieu's equation reads

az + (A — 2¢ cos2x)y = 0. 4)
dx?2

It is well known8,13 that Eq. (4) has periodic solutions
of period 7 and 27 when A has a countably infinite set
of characteristic values. The real parameter g deter-
mines the depth of the potential well 2g cos2x; here
we will discuss the asymptotic behavior of (4) in the
limit of infinitely deep wells, i.e., when ¢ » ®, Equa-
tion (4) with the associated boundary conditions

y'(0)=y'(m)=0 (5)

defines a regular Sturm-Liouville system?2 whose
eigenfunctions are the even periodic Mathieu func-
tions

ce,(v,q), ¥ =0,1,2--, (6)
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The eigenfunctions of Eq. (4) with the boundary condi-
tions

y(0)=y@) =0 (1)
are the odd periodic Mathieu functions designated

se,x,q), r=1,2,3,---. 8)
Here we follow the standard notation of Ref.8. The
reason for the notation ce, (cosine elliptic) and se,
(sine elliptic) is that for g = 0 the eigenfunctions of
systems (4) and (5) and (4) and (7) become, respec-
tively, the trigometric cosines and sines.

As discussed in Sec.II, for very deep wells (g — ©)
the lowest eigenvalues approach asymptotically the
minimum value of the potential V; = — 2q,i.e.,

A=0(). ©)

Therefore, a simple division of Eq. (4) by the para-
meter ¢ shows that for ¢ —» ©, we have a singular
perturbation problem14

2
€ d-y; + (A — 2 cos2x)y =0,
dx (10)
€e=1/g-20, A=)/qg=0Q).

In general, the solution of these problems cannot be
obtained as a single series that is uniformly valid in
the whole domain.14 A direct expansion of the solu-
tion of (10) in powers of the small parameter € gives
to all orders

y{xv,e)=0. 1)

The meaning of the formal result (11} can be under-
stood by considering that it is obtained by neglecting
the term €d?2y /dx2 in (10), and this is justified only in
the region where the curvature of the solution is not
large. As the curvature is greatest at the domain
center x = 37, (11) suggests that the solution away
from the center is transcendentally small, a conclu-
sion consistent with the boundary conditions (5) and
(7). To study the solution in the inner layer about the
domain center x = £7, where it has nonnegligible
values, we introduce the stretched variable

£=m/2—x)/el/2, (12)

and (10) becomes

a%y (A + 2 cos2Ve Z)y = 0. (13)
dx?2

This transformation shows, as the small parameter €
has been eliminated from the highest order derivative
term, that in the limit € — 0 the thickness of the
region about 37 where the solution is not negligibly
small approaches zero as €1/2,

The procedure is now straightforward, as described
in Sec.Il. One expands

cos2Ve £ =1 — 2ex2 + 5€27% — z €356 + .-+ (14)

so that (13) becomes

?i;cz'% + (A + 2 — 4eR2 + 3e2%% — Le3%6)y = 0. {15)

It is now convenient to introduce still a new indepen-
dent variable

x* = (4e)1/4%, (16)

so that (15) takes the well-known form of the equation
for an anharmonic oscillator

d2y
dx*2

where the eigenvalue p is defined as

+(p—x*2 + e x*t — mex*S)y =0, (17)

p=(A+2)/21/2, (18)

The situation is now quite clear, as Mathieu's func-
tions become transcendentally small except in an
infinitesimally thin layer about %n, for all quantita-
tive purposes the domain (whose length is 7) can be
considered to be of infinite length. Therefore, we
will solve the equation for the anharmonic oscillator
(17) subject to the usual boundary conditions

y(x ©) finite. ; (19)

This means that in the limit ¢ — ©, the even and odd
periodic Mathieu functions ce, and se, approach each
other asymptotically, a2 known analytic resul{10.11,15
that has also been established numerically.? Heuristi-
cally, we make the hypothesis that for infinitely deep
wells all regular Sturm-Liouville systems approach
the same asymptotic limit, independently of the type
of homogeneous boundary conditions. This is because,
just as for problems in infinite domains, boik the
eigenfunctions and their derivatives vanish asympto-
tically at the finite domain boundaries, and this is in-
deed equivalent to any of the homogenous boundary
conditions naturally associated with the Sturm=-
Liouville equation (Courant and Hilbert, p. 291).1 This
asymptotic limit is given by the solution of Schro-
dinger's equation for the anharmonic oscillator (17)
and (19), which is now solved by standard perturbation
theory.3.4

The unperturbed Hamiltonian is
HO = x*°) (20)

which gives the familiar equation for the harmonic
oscillator, and the perturbed Hamiltonian is

’ — [
H = — Hex*t + Lex*s, (21)
The solution for the harmonic oscillator is
P9 =2n +1, (22)

yO(x*) = (2nn!Vm)1/2 e-x*z/an x*), n=0,1,2,...,

(23
where H, are the Hermite polynomials.

Second-order perturbation theory for the eigenvalues
gives .

P =)+ )+ T (W /00— 00 (24)

while the first-order perturbation theory result for
the eigenfunctions is

dJ. Math, Phys., Vol. 13, No. 5, May 1972
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y, =99 + Z#)k ((H')n/ 09 — )]0, (25)
n
In (24) and (25), (H’),, are the matrix elements
H )y = GQLH'Y9) = [ yOH'yQdx*, (26)

which are obtained in the usual way (Landau and Lif-
shitz, p. 136).3 All the nonzero matrix elements
necessary for our approximations (24) and (25) are

, 3@+ 1)2+1Ve
H)y, =SBt L2+ 1Ve
4 2 6
. 2013 + 30n2 + 400 + 15 €
8 90’

‘(H’)n,m»z = (H')n+2.n

__(nt+eNin+2)n+1) Ve
= : <

+ O(e),

(H'), g = H )y, (2m
_ Ao F Y +3)n + 2)n +1) Ve
- 4 6

+ 0(e),

n=0,1,2 -+,

We now substitute the matrix elements (27) into the
eigenvalue expression (24), which in this case is
given explicitly by

[(H')n-ll.n]z + [(H’)n-z,n]z

o =P+ ('), +

PP —p24 P — Pl
+ [(H,)n.n+2 ]2 + [(H-’)n.n#l ]2 (28)
L I e O

as all the other matrix elements are zero. It should
be noticed that the matrix elements (#’),_, , are ob-
tained from the last equation of (27) by substituting
n +4byn,n +3byn—1,etc. The eigenvalues p
are now transformed back into the original Mathieu
eigenvalues ) using the definitions (18) and (10).
After some elementary although delicate algebra we
finally get

A, =—2q +2(2n + 1)g¥/2 —{[(2n + 1)2 + 1}/23}
—{len + 1)3 + 3(2n + 1)]/27}g71/2 + O(¢q7),
n=0,1,2,..., , (29)

which gives exactly the first four terms of the classic
result of Goldstein's and Ince's [Eq.(36), Ref.5, also
Eq.20.2.30,p. 726, Ref. 8].

It is worthwhile to remark here that the first three
terms of (29) are obtained simply by first order per-
turbation theory, keeping only for the perturbed
Hamiltonian the first term in (21). It is clear that
higher order terms in the asymptotic series (29) can

be obtained by using higher order perturbation theory.

However, the result (29) is sufficient for our purpose
of illustrating the asymptotic behavior of regular
Sturm-Liouville systems.

In Table I, we give the Mathieu eigenvalues obtained
from the first three terms of Eq.(29), together with
those obtained from the full four term asymptotic
formula. It is seen that, as expected, the accuracy of
the asymptotic treatment increases with the depth of
the well, i.e., with the value of the parameter g. Thus
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TABLE 1. First five eigenvalues of Mathieu's equation.

— 2, (g = 1600)
Three term Four term
r asymp.form. asymp. form. (29) Exact?
0 3120.250 3120.251 3120.261
1 2961.250 2961.257 2961.257
2 2803.250 2803.277 2803.278
3 2646.250 2646.321 2646.323
4 2490.250 2490.398 2490. 403
— (g = 2500)
Three term Four term
¥ asymp.form. asymp.form.(29) Exacte
0 4900.250 4900. 251 4900.251
1 4701.250 4701.256 4701.256
2 4503.250 4503.272 4503.272
3 4306.250 4306.307 4306.308
4 4110.250 4110.368 4110.372
—A, (g = 10000)
Three Four term
r asymp. form. asymp. form. (29) Exact®
0 19 800. 250 19800. 250 19 800. 250
1 19401.250 19401. 253 19401. 253
2 19003. 250 19003. 261 19003. 261
3 18 606. 250 18 606. 278 18 606. 279
4 18 210. 250 18 210. 309 18210.310

2Determined numerically (Ref.9), and also using higher order terms
in Goldstein's and Ince's asymptotic formula.

for ¢ = 1600, the four-term formula gives better
than six significant figure accuracy, and seven and
eight significant figure accuracy is obtained, respec-
tively,for ¢ = 2:500 and 10 000, It should also be
noticed that a simple first-order perturbation theory
treatment, i.e., the three term asymptotic formula,
gives better than four significant figure accuracy in
all cases shown.

To conclude this section, we give some numerical
results for the Mathieu functions computed from the
first-order perturbation theory formula (25). For
clarity we will write down the results explicitly. The
fundamental eigenfunction is

ceox*, )
se (x*,q)) yolx*, q)

— 0 +£<_3_ Q +E o\)J?+
yo 6 453)2 8\/—2_3)4 0(6)) (30)
where y2 are the orthonormal Hermite functions
given in (23). In Table II we compare with the exact
numerical values® the results obtained using the
first term (harmonic oscillator) of (30) and the com-
plete perturbation formula, As expected, the accuracy
is only good near the minimum of the potential which
is at the domain center i7. However, the accuracy is
lost only where the function is already negligible
compared with the values at the center. These results
are in general agreement with those of Sips10,11 who
obtained asymptotic series for Mathieu's functions of
higher order than (30). However, Sips' series are not
as simple for hand computations because the space
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TABLE II. Comparison of perturbation theory results for Mathieu’s function cey(x, ¢) or se;{x, g) with exact values.?

cey(909)/ce,(850) cey(909)/ce,(809) cey(900)/cey(700) cey(900)/cey(609)
First- First- First- First-
Harm. order Harm. order Harm. order Harm. order
q oscill. pert. Exact osciil. pert. Exact oscill. pert. Exact oscill. pert. Exact
1600 1.356 1.3556 1.355 3,382 3.359 3.359 1.308 +2 1.229+2 1.226+2 5.789+4 4,504 +4 4.362 +4
2500 1,463 1.462 1.462 4.586 4,551 4.551 4.425+2 4.108+2 4,097 +2 8.979+5 6.662 + 5 6.358 +5
10000 2.142 2.138 2,138 2,103 +1 2.079+1 2,079 +1 1.958+5 1,719+5 1,704 +5 8.062 +11 4,854+ 11 4,186 + 11
2The notation 1.5 + 2 = 1.5 X 102 is used. The exact values are from Ref.9.
TABLE IIl. Zeroes of Mathieu's functions.?
ce, and se, ce, and seq
First-order First-order First-order
q Harm. osc. pert. Exact Harm.osc. pert. Exact Harm.osc. pert. Exact
1 600 1.4917 1.4913 1.4914 1.3862 1.3856 1.3846 1,5121 1.5120 1.5117
2 500 1.5001 1.4998 1.4998 1.4057 1.4052 1,4046 1.5183 1.5182 1.5180
10 000 1.5208 1.5207 1.5207 1.4541 1.4539 1.4537 1.5337 1.5336 1.5336

2The exact values are from Ref,9,

variable appears only as cosx™, so that one has trans-
cendental polynomials in cosx™ [see Eq. (3), Ref. 11]
while expressions as (30) are simple algebraic poly-
nomials in x*. It is clear that higher order perturba-
tion theory would yield higher order terms in (30), but
we do not think it to be a worthwhile exercise, be-
cause the analytic results are useful only if they are
sufficiently simple for computation by elementary
means.

As another illustration of the usefulness of these
simple results, we have computed the zeros of the
third and fifth eigenfunctions, namely

cez(x*,q)(Nyl _ug+ (H')os v+ (H),y, 40

sey(x*, )} 72 pg —pY % pQ—p9 1
(H)gg N 1/ 3 3 —
+T"—oy3~y3—é(7=y8——y2>“’

where for simplicity we have neglected the last term
involving y 2; in this way the zeros of ce, and se; can
be obtained analytically by solving a simple biquad-
ratic equation. For this same reason, in the expres-
sion for ce, and se; we neglected the terms involving
y¥and y§, so that we are left with

cey(x*, q) 1 ( V3 ™3 ) =
Dmyr my0 2 (¥ o4+ Y9 holye. (32
sesls*, )} VaRyl-glgg Yot v3)e, (32)

so that again the zeros are given by solving the above
biquadratic equation. The results obtained are given
in Table III. The most striking fact in Table III is
that the zeros of the harmonic oscillator eigenfunc-
tions, i.e., of the Hermite polynomials, are accurate
to four significant figures. The approximate first-
order perturbation theory results have almost five
figure accuracy. The reason for this accuracy is
that, in the limit g - «, all the zeros condense toward
37 and thus are located precisely in the inner layer
about the center where the functions are obtained
accurately.

4. SCHRODINGER'S EQUATION WITH MORSE'S
POTENTIAL

In connection with the description of the bound states
of diatomic molecules, Morsel2 defined the following
Schridinger equation problem:

2
% +[A — g(e2a — 2¢7%x)]y = 0, y(+ ) finite. (33)
X

The problem (33) has an analytic solution for the
bound states, which is given concisely in Landau and
Lifshitz, p.68.3 The reason for having chosen this
problem as an illustration of the method of Sec.II is
that the potential well is strongly asymmetric, and
thus it seemed a good test of a method where the
zeroth order perturbation is the solution of a problem
with a symmetric potential, i.e., the harmonic oscilla~
tor. Following Sec.II, we expand

gle2® —2e%) = — q + a2gx2 — a3qx3 + L atqx?
Fal (39)

We now introduce a new independent variable

x* = (a2q)1/4x (35)
and the definitions
= rAtq
p= (a2q)172’ (36)
€ = ql/2g1/4, (37

where the attractive strength of the well 1/¢ depends
now on the two independent parameters g (the depth
at x = 0) and a (a measure of the width of the well).
In this way, problem (33) becomes

d2y
dx ™2

+(p—x*2 + ex*3 — L e2x%4)y =0,

v(* o) finite, (38)
which is again the problem of an anharmonic oscilla-
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TABLE IV. Bound-state eigenvalues of Schrédinger equation with
Morse's potential,

— A

Exact Numer. solution Numer. solution
n  Eg.{43) of Egs.(33) and (47) of Eqs.(33) and (48)
0 178,798 178.1798 178.798
1 160.283 160,283 160,283
2 142,780 142,780 142,780
3 126,288 126.288 126, 288
4 110,808 110.808 110,808
5 96.340 96.340 96.340
6 82.884 82.884 82,884
7 70.439 70.438 70.438
8§ 59,007 59,006 59.006
9 48,585 48,585 48,585
10 39,176 39.176 39.176
11 30,778 30.778 30.778
12 23,393 23.393 23.393
13 17.018 17,018 17.018
14 11,656 11,656 11,656
15 7.305 7.305 7.305
16 3.966 3.958 3.976
17 1.639 1.392 1.829
18 0.324 —1.232 0.011

tor. The unperturbed Hamiltonian (harmonic oscilla-
tor) is

H 0 = x*z, (39)
while the perturbed Hamiltonian is
H' = — ex*3 + L e2x*4, (40)

It should be noted that as the diagonal matrix ele-
ments of the first term of {40) — ex*3 are zero, first-
order perturbation theory of this part of the Hamil~
tonian does not give any correction O(¢) to the har-
monic oscillator eigenvalues. To get any improve-
ment, it is necessary to use second order perturba-
tion theory. All the nonzero matrix elements of H’
required are

H),, =} +n+3)e?,

H g = H g = — [ (0 + 13126, (41)

H )z = H )z = — [§(n + 3)n + 2)(n + 1)]172¢,
n=0,1,2,---,

Substituting the matrix elements (41) into the second-

order perturbation theory formula for the eigenvalues
(24), we get

n=0,1,2.--,

p,=02n+1)— 1(8n + 1)2€2 + O(e4),
(42)

Transforming back to the original eigenvalues of (33)
using the definition (36), one gets

A, =—q+ (@2n+ 1)aqi/? — i(2n + 1)2a2,

n=0,1,2,..., (43)
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which exceptionally is identical to the exact formula
for the bound-state eigenvalues (Ref.3, p. 69),

A, =—q[1 —(a/q12)(n + 3)]2.

It is quite interesting to compare the result (43} for
the eigenvalues of Schridinger's equation with the
first three terms of (29), the corresponding result
for Mathieu's equation. It is seen that both asymp-
totic series are quite similar, and that the first three
terms are of orders ¢,¢/2,and 1 in the depth of the
potential well. The results (29) and (43) more than
anything else show quite clearly the strong similarity
that exists between the asymptotic behavior of regu-
lar and singular Sturm-Liouville systems.

(44)

We now conclude with a numerical example which
further illustrates the main conclusion of this work.
Since the asymptotic behavior of regular and singular
Sturm~Liouville problems is the same, we can
approximate the solution of a regular problem by that
of a singular problem or vice versa.Schridinger's
equation (33) for the values of the parameters

g = 188.4355, = 0.711 248, (45)
has 19 bound-state eigenvalues determined by the
condition (Ref.3, p.68)

1/e2>n+3, n=0,1,2,..., (46)

where ¢ is defined in (37). We have approximated
this problem by the regular Sturm-Liouville systems
defined by Eq.(33) together with the boundary condi-
tions

y{—1,9975) = y(8.0025) = 0
and
y'(—1,9975) = v’(8.0025) = 0.

(47
(48)

The 19 bound-state eigenvalues from the exact for-
mula (43) and from the numerical solution16 obtained
using the boundary conditions (47) and (48) are given
in Table IV. It is seen that the agreement between the
first 16 eigenvalues is excellent, so that the regular
Sturm-Liouville approximation to problem (33) with
the boundary conditions (47) or (48) is valid for a
surprisingly large number of eigenvalues and not
only for the lowest bound states. The numerical re-
sults shown in Table IV for the regular Sturm-Liou-
ville systems with boundary conditions (47) and (48)
give further evidence that the asymptotic behavior of
these problems is independent of the type of homo-
geneous boundary conditions. It should be noted that
all of the eigenvalues obtained numerically are be-
lieved accurate to all figures given.

5. CONCLUSION

We have shown that in regular Sturm-Liouville prob-
lems with very deep wells, the eigenfunctions cluster
in a small region about the minimum of the potential,
As the eigenfunctions become transcendentally small
at an infinitesimally small distance from the domain
center (always chosen at the potential minimum), the
problem, regardiess of the homogeneous boundary
conditions, can be treated as a problem for infinite
domains with the boundary conditions (19). This indi-
cates that both regular and singular Sturm-Liouville



STURM-LIOUVILLE SYSTEMS 621

systems have the same asymptotic behavior, This
conclusion is illustrated by the remarkable similarity
that exists between the asymptotic formulas for the
eigenvalues of Mathieu's equation and of Schrodin-
ger's equation with Morse's potential, two problems
which at first sight seem totally unconnected. The

solution is obtained by perturbation theory;the first
order perturbation eigenvalues have already quite a
remarkable accuracy, while the eigenfunctions are
obtained accurately only in a thin layer about the do-
main center where they have their nonnegligible
values,

1 R.Courant and D. Hilbert, Methods of Malhematical Physics
(Wiley ~Interscience, New York, 1962), Vol.I, pp.291 and 391.

2 G.Birkhoff and G.-C.Rota, Ordinary Diffeveniial Equations (Ginn~
Blaisdell, Waltham, Mass., 1962), 2nd ed., Chap. 10.

3 L.D.Landau and E, M. Lifshitz, Quantum Mechanics: Nonrelativis-

tic Theory (Addison-Wesley, Reading, Mass., 1958), Chap. 6.

R.H.Dicke and J. P.Wittke, Infroduction to Quanlum Mechanics

(Addison-Wesley, Reading, Mass., 1960), Chap. 14.

S. Goldstein, Cambridge Phil.Soc. Trans. 23,303 (1927).

E.L.Ince, Proc. Roy. Soc. (Edinburgh) 46,316 (1926),

E.L.Ince, Proc. Roy. Soc. (Edinburgh) 47, 294 (1927).

M. Abramowitz and I. A, Stegun (Eds.), Handbook of Mathemalical

S

® ~ @ v

Funclions (Dover, New York, 1965), Chap. 20.

9 J.Canosa,dJ.Comput. Phys. 7,255 (1971),

10 R.Sips, Trans. Amer. Math. Soc. 66, 93 (1949).

11 R.Sips, Trans. Amer. Math. Soc. 90, 340 (1959).

12 p, M. Morse, Phys. Rev. 34, 57 (1929).

13 N.W.McLachlan, Theory and Application of Malhieu Funclions
(Dover, New York, 1964).

14 J.D.Cole, Perturbalion Methods in Applied Mathematics (Ginn—
Blaisdell, Waltham, Mass., 1968), p. 14

15 G.Blanch, Trans. Amer. Math. Soc. 97, 357 (1960).

16 J,Canosa and R.G.de Oliveira, J. Comput. Phys. 5, 188 (1970).

On the Eigenvalues of the Invariant Operators of the Unitary Unimodular Group SU(n)

A. Partensky
Inslitul de Physique Nucléaive, Universilé Claude Bernard de Lyon (Inslitul Nalional de Physique Nucléaive el
de Physique des Pavticules), 69-Villeurbanne, France
(Received 18 June 1971; Revised Manuscript Received 29 November 1971)

By a purely infinitesimal method we derive the eigenvalues of the Biedenharn's invariant operators from I, to
I for the SU(n) group. We show that the general formula, quoted from the Racah's work by Baird and Bleden—
harn, to obtain the eigenvalues of the invariant operators, is valid only for the two first I, and 7, operators and
not for the higher order invariants. We give the correct values for the first invariants till L.

1. INTRODUCTION

In a paper published in 1963, Biedenharn! has given
an explicit construction of the independent invariants
for the unimodular unitary group in » dimensions
SU(n). He proves that their invariants form a com-~
plete system of independent invariants suitable for
uniquely labeling the irreducible inequivalent repre-
sentations. In a second paper Baird and Biedenharn?
pointed out that the evaluation of the invariant may
be inferred from the form of the terms K, in I, in-
volving the only #,. If we denote the highest weight
by vector p and by R the vector whose components
are one half the sum of positive roots, we can de-
fine

J,P) =K,p +R) — K,(R). 1)
K, (A) is that part of the nth invariant I, involving the
h, with b, — A,. Baird and Biedenharn2? demonstrat-
ed that the elgenvalue of the invariant operator I for
SU(3) is J5 and further said that: “Racah has assert-
ed that the result we have just demonstrated for
SU(3) is true in general.” So that, the eigenvalue of

I, should be simply J,. The purpose of the present
paper is, as suggested by Baird and Biedenharn,2 to
show by a purely infinitesimal proof that this result
is only true for the I, and I; invariants of SU(x) and
breaks down for the higher order invariants. The
correct formulas have been derived for I, I5, and I;.

The work of this paper is arranged in the following
order. In Sec, 2, we summarize the results con-
cerning the explicit construction of invariants in
SU(n) by setting the notations and giving all the ex-
pressions which are required for our purpose. In
Sec. 3, we give an expression for the invariant I, of
the SU () group derived in the fundamental repre—

sentation and show that, in the particular case of the
fundamental representation, the formula proposed by
Baird and Biedenharn is not verified for the I, in-
variant. In Sec. 4, we develop the full calculation and
give the formulas which actually have to be used to
obtain the eigenvalues of the first invariants up to I;.

2. SUMMARY
A. The Algebra of SU(n)

In order to properly parametrize the SU(n) group, it
is better to let the null trace condition naturally
appear and not as a supplementary condition. In this
view, Biedenharn! defines a new basis for the dia-
gonal elements £, by inserting the real coefficients
X9, We define here these coefficients, as a particular
solutlon for the following equations:

7 n-1
TN =0, T =5, (2a)
=1 i=0

n

. . 1

XD =0fori= 0, XNO=--_7+ 1 2
ZZ)ll s == orany !, (2b)

X9 = 0 for any 4. (2¢)

Condition (2c) is a subsidiary condition of interest

only in making the first component of the weight
vector positive.

The »n — 1 diagonal elements 4,(i = 1, 2,
SU(n) of null trace are written'

= (2n)1/2 _zlxp ¢ (32)

eo.,n—1)0f

We define for convenience the element k, similarly,
n
0= (2u) /2 35 XDe, =271/2 p1 ], (3b)
=1
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not for the higher order invariants. We give the correct values for the first invariants till L.

1. INTRODUCTION

In a paper published in 1963, Biedenharn! has given
an explicit construction of the independent invariants
for the unimodular unitary group in » dimensions
SU(n). He proves that their invariants form a com-~
plete system of independent invariants suitable for
uniquely labeling the irreducible inequivalent repre-
sentations. In a second paper Baird and Biedenharn?
pointed out that the evaluation of the invariant may
be inferred from the form of the terms K, in I, in-
volving the only #,. If we denote the highest weight
by vector p and by R the vector whose components
are one half the sum of positive roots, we can de-
fine

J,P) =K,p +R) — K,(R). 1)
K, (A) is that part of the nth invariant I, involving the
h, with b, — A,. Baird and Biedenharn2? demonstrat-
ed that the elgenvalue of the invariant operator I for
SU(3) is J5 and further said that: “Racah has assert-
ed that the result we have just demonstrated for
SU(3) is true in general.” So that, the eigenvalue of

I, should be simply J,. The purpose of the present
paper is, as suggested by Baird and Biedenharn,2 to
show by a purely infinitesimal proof that this result
is only true for the I, and I; invariants of SU(x) and
breaks down for the higher order invariants. The
correct formulas have been derived for I, I5, and I;.

The work of this paper is arranged in the following
order. In Sec, 2, we summarize the results con-
cerning the explicit construction of invariants in
SU(n) by setting the notations and giving all the ex-
pressions which are required for our purpose. In
Sec. 3, we give an expression for the invariant I, of
the SU () group derived in the fundamental repre—

sentation and show that, in the particular case of the
fundamental representation, the formula proposed by
Baird and Biedenharn is not verified for the I, in-
variant. In Sec. 4, we develop the full calculation and
give the formulas which actually have to be used to
obtain the eigenvalues of the first invariants up to I;.

2. SUMMARY
A. The Algebra of SU(n)

In order to properly parametrize the SU(n) group, it
is better to let the null trace condition naturally
appear and not as a supplementary condition. In this
view, Biedenharn! defines a new basis for the dia-
gonal elements £, by inserting the real coefficients
X9, We define here these coefficients, as a particular
solutlon for the following equations:

7 n-1
TN =0, T =5, (2a)
=1 i=0
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XD =0fori= 0, XNO=--_7+ 1 2
ZZ)ll s == orany !, (2b)

X9 = 0 for any 4. (2¢)

Condition (2c) is a subsidiary condition of interest

only in making the first component of the weight
vector positive.

The »n — 1 diagonal elements 4,(i = 1, 2,
SU(n) of null trace are written'

= (2n)1/2 _zlxp ¢ (32)
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We define for convenience the element k, similarly,
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ko is not a generator of SU(x), but a multiple of unity
and is the generator of the U(1) group.

The n(n — 1) remaining operators keep Weyl's form,
except for what concerns the normalization, They
arecalled conventionally ¢ and e_ , where a denotes the
index pair (ij) and —¢ the indexing pair (ji) with { <3,
respectively:

ea = (2?7)'1/2 C.:

iy €S (2n)1/2 ¢,

o 1<j. (@
Biedenharn! defines )\(Ii) as a particular solution of (2).
which can be written

)‘(li) = (—1)n-1*i

-1 n-1 +1
x C(% — 1+2 )
( 2 ' 2 2/ ®
The phases (— 1)*? and (— 1)¢ prove that Conditions
(2b) and (2c¢) are, respectively, well fulfilled.

The definition of the X? with the help of Clebsch-
Gordan's coefficients as used by Biedenharn, has the
advantage of giving an explicit realization for the

A‘l” which allows one to define a canonical basis for
the Lie algebra of SU(n).

What is important, though, is not the explicit form of
these coefficients, but Properties (2a) and (2b) they
verify. The definition we take is less restraining, so
that the expressions which will be valid for any par-
ticular realization of the X?. This is an advantage
because the Clebsch~Gordan coefficients do not al-
ways give the simplest and most interesting realiza-
tion for a given SU(n) group in any precise physical
problem,

n+t1l

2 G 1— ) y

Let us write collectively x, the n2 — 1 generators of
SU(n). These generators x 4 have been defined with
the help of the n X n matrices which correspond to
the fundamental representation. Inthis representation
we can write the anticommutation relation

[xA’xBL =gh05;13 +ZC;[ABC]’CC’ (6)

which defines the vectorial coupling coefficients
[ABC].

Let us now denote by capital letters X, (collectively
for E, and H,), the generators in any representation,
the small letters being reserved for the fundamental
representation.

The metric tensor g,p has the canonical form g, =
5,8 which is useful for raising or lowering the

indices
%) [ABM ]gMC = [ABC]’

For the SU(n) group, the (A BC) structure constants
are given by the following equations which can be
easily verified:

(ijk) = 0, (7a)

(la — @)= @ny1/20( — D), a = (,m), (Tb)

(aBy) = (llmb lZmZ’ l3m3) = (zn)-l/z(émﬂz 6”‘213 6”‘311
— 8} my Otymy Opym )3 (7€)

1™z “laMmg
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and the vector coupling coefficients [ABC] are given
by the following:

2 n
(k] = \/% 21 P (8a)
l:
lia — a] = @n) Y2 () +20), a=(,m),  (8b)

[0‘37] = [llmly Lymy, l3m3] = (2n)‘1/2[6m112 6"'213 6’”311
+6 .6 .6 . ]. (8¢)

1ymy “igmy igm,

(ABC) is totally antisymmetric, whereas [ABC] is
totally symmetric in all the indices.

We call root vector the vector a(a,,@p,...,a,4)
with components o; = (ia®) in the H, space. Asi is
a vector, the components of which are all null (i = 0),

we show easily that we have (ABC) = 0 and [ABC] =0
exceptif A+ B+C =0,

B. The » — 1 Invariants of SU(n)
Biedenharn has shown that the set of operators

Ly = 25 8ag X, TS%) R varying from 1 to n — 1 (9)
Y]

with
TV =X, and T = }[ABC] X, TV
AB

form the complete set of the » — 1 invariants suit-
able for labeling the irreducible inequivalent repre-
sentations of SU(n).3 Casimir's construction guaran-
ties that I,,; is an invariant if 7{#) is a vector under
SUm).

This is shown because of the relation
2BCP](ADE)+ [CAP)(BD®) + [ABP](CD®) = 0,
D

(10)
which is obvious if we write

[x4: (%5, xc ) + [%5, (26, %41.)-
+ [xC:[xm xa]+]-5 0.

We calculate the eigenvalues of these operators by
application to the higher-weight vector denoted |p).
Applied to this vector, a raising operator gives zero

(11)

E,lp)=0. (12a)

The T being also a vector, we have therefore ina
similar way
TSR [p) = 0. (12b)

The diagonal operators (or operators of weight Hi)
have p, for eigenvalue

H\B) = p, 15). (13)

Inthe case of the fundamental representation in which
we note |F.R.),the vector of higher weight, we have

B \F.RY = 1/v2n) X [F.R.). (14)
Let R be the vector equal to half the sum of the
positive roots
R,=3%73; (@ —ai). (15)
ot
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We can now calculate the eigenvalue of the Casimir's
invariant

L= EgAB X, Xp = 2 XaX 4.
AB A

The calculation is very classic? but we give it again
because it is a very clear illustration of the method
used to calculate the eigenvalue of the invariants of
higher order:

L1p) :(2Hi2 + D EaE—a>‘5>’
SEE Ip)= [2 B E,+ 2 (a —ai)Hi:l 17)
:Zi) 2R.H;1D)
or still with (1)

Llpy=Jd,lp). (16)

3. EIGENVALUE OF THE INVARIANTS IN THE
FUNDAMENTAL REPRESENTATION

In the fundamental representation we can do a direct
evaluation of the invariant operators. The generators
verify the anticommutation relation (6) which allows
us to reduce the degree of the operators and finally
express them as a multiple of the identity k.

Indeed, we have
XpXp =3 (n’zé;\ﬂ + ), {[ABP] + (ABD)}xD> 1)
D
and the three following obvious relations

2 IABCl8E =0,

AB

2 [ABC{ABP) =0,

AB

23 (ABC)[ABP] = [(* — 4)/n2] 6.

AB
Let us consider the vector t(:). The above expres-
sions give

t2) = 3 [ABC] x x5 = 3 (02 — 4)/n2] x¢,

AB
which can be generalized as
tim=[(n® — 4)/2n2)% 15, (18)
and for the invariant of order £ + 1 we have
n2 ~1 (2 — 4\ +1
I =< | .
17 o2 ( 212 ) 19

This formula allows us to test the generalization of
(16) by evaluating J in the fundamental representa-
tion. For that, we first establish a simple expression
for the sum of the positive roots.

We consider the j vectors a/, (j varying from 1 to
n — 1) of components o/(7 varying from 1ton — 1)
defined by

af = 2n) /2 (9 — X)) (20)

We suppose that the 7 indices are ordered in such a
way that the a; roots are positive, and thus the first
nonvanishing component of ai(a}, o}, ..., wl_4)is

positive, In the same way, we suppose that the j in-

dices are chosen so that the @/ roots are in a de-
creasing order al = @2 > ++* 2 g#1,
After that, we can see that the o/ define the set of

n — 1 simple roots of SU(n) and R; defined in (15) is
written

R = :@nyl/2 3 00 —29).

i m>l
Some elementary manipulations on the summation
transform it into

n-1
R, =z (202 3 kn— k) (AP — A&,). (21a)
k=1
So we express one half the sum of the positive roots
in terms of the simple roots of the group. By manipu-
lating the summation, it can be still written

n
R, = (2n)1/2 3, 7’1)‘(li)
I=1
with
Y, = sm+1)—1

(21p)

(21c)

From now on, except where otherwise stated, we will
always make the summation convention on the repeat-
ed indices, with the 7 indices (or A(li) higher indices)
varying from 1 to n — 1 and the [ indices varying from
1 to #n. The orthogonality relations (2a) are then
written

MoAD=6;, XY =3, —1/n (22)

The use of (15) and (21) gives
(b, + R)IF.RY = @) /2 0¥ + y, 21 )| F.R.). (23)

We see that the sum of the v, of odd powers vanishes,
(n-1)/2

n
Sl=1+ =1 T W (24)
741 y =€
with € = 1 if # is odd and € = 3 if n is even.
We can now derive the J, operator in the fundamental
representation

J3 = [ije] (k; + R) (h; + R)) (h, +R,) — [z‘jk]RiRj(Rk
25

and obtain

n2 —1\ (n2 — 4)
FR.,)=(——]|———] |F.R. 26
5,1PR) = (B2 (222 Irm), (26)
which is in accordance with (19).

For J,, the analogous calculation does not present
any theoretical difficulty, but is long and rather
tedious, and gives

aien = (52 (5% +§ (57 e

This form is not in accordance with (19) and thus the
generalization (16) is cerfainly unvalid for I,.

4. EVALUATION OF THE INVARIANTS IN THE
CASE OF AN IRREDUCIBLE NONEQUIVALENT
REPRESENTATION OF HIGHER WEIGHT {p)

To make the notation easier to handle, we define
si=z Ddlea—alla@—0a) +[a—a;)(a—a)},(28a)
a?
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Sjand Af are expressed in terms of the X,
1 2 ;
SJ; =2 ?31 % A Agi), (28Db)
1w &
Al == ADAD — xDA, 20h
J 272— QZ=>1 z—}l ( q i & Aq ) ( )

There exist many equivalent ways in writing A? and
the two following relations, very useful in the calcula~
tion, are used here:

n n

q n n
» 2 (‘Pq‘l’k + @ \I’q) = Z_) (pq‘llq + Z) Z_) (qu’k’
g=1 k=1 g=1 g=1 k=1 30 )
n g n n ( a
2 oY= L 2, %, (30D)
g=1 k=1 g=1 k=¢q

for any function ¢, and ¥,.

Si and A? are symmetric in the indices / and j ex-

c{xanges,whereas A} is antisymmetric,

We substitute in (10) B=4, C=j, A=0a, E=aq,

and adding o* we obtain
Si = [ijk] R,. {28c)

With these notations, we apply (9) to the higher weight
1§ to obtain

L.,|1P)= (H, +2R)tP1P), (31a)
TW| ) =(A} + A§) T D p) (31b)
that is,
Lglb) = (H, + 2R) (Ai + AD)++ (A} + ADH,IP)  (32)

with n — 1 factors (A + Aj).

The symmetric part is designated by [$]} and the
antisymmetric part by [@]¢ under the exchange of the
indices ¢ and [ in the (n — i) factors (Ag + Ag)

(A + A (8] +A) (A +AN =8+ [@]i. (33)

This allows us to write (33) in the following form:

L. 1p) ={[®; + R) H, + R)—RR][8]; + 2R,(H,+R)
x [@li}1p). (34)

Now we must develop the quantities [8]/ and [G]/ for
each invariant,
A. I; Invariant of SU(xn)
We have
(8] = Aj
which gives
L1p) = {(#, + R)A MH, + R) — 24 + Si)

X R, (H, + R)}p).

and [@]f = 4},

(35)
with (21), (28), and (29) it can easily be shown that
(24} + SHR; =0, {362)
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Remark: It must be emphasized again that in this
formula, the repeated 7 index summation rules from 1
ton—1,

We also have

R,SiR; =0,

With (36) we then write for I,

(36Db)

I3lpy={(#; + R)A{(H; + R;) —R;SiR} )
or still

I lE) =dJ3 IZ’), @7

which generalizes to SU{r) which Baird and Bieden~
harn? found in the particular case of SU(3).
B. I, Invariant of SU{(n)

We are going to develop the calculation for this in-
variant because it is typical and illustrates the pro-
cess of calculation of any higher order invariant, We
have

[s]; = AjAf +4j4),
(@] = AjA] +AiA].

Bringing back these values in (34) and using (28) and
(36), we obtain

L1p) = {Js + (W + R) (W, + R)(A] + S) (4] — S))
+ R, S¢ljil]] + 3 R, SiSiR,} |5).

We easily calculate

5 . N

7 R;S;SiR,

n2 —4 _n2(nt —1
o & @ R —E(W) (89)

We shall now consider the following expression:
(Aj + S0 (4] —S9) + R, S¢[jil).

With the help of (30) we can write for the term
AiAT,

(38)

(40)

. 1
A}Az’—(z‘r‘;% .

g=1 p=1
n
(Lls_ L3P ww).
9 ' mogc1 el ke

We now sum on j and use (30b) which can be written
here as

o
2
g=1

and we obtain

o
Y= B la—g+ 1))
k=1 q=1

. 1 & & .
Ald=L s - L % Z — %) (GNP

4n2 202 g=1

: 2
+MNP) + = RiR,.

In a similar way we calculate the AiS], SiA] Sis-%,
and R, Sg[jil] terms and setting the results in {a0 ,
we find

. A : oy w2 —4
(A} + S}) (A] — 87, + Ranf]ll] =T T /.
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Bringing (39) and (41) in (38) we finally have

LIB) = (J4 ~Et Jz)\i» (42)

which verifies (19). A corrective J, term in addi-
tion to J, appears.

C. I invariant of SU(»n)

The calculation is analogous to the previous one. We
demonstrate the following formulas,

{(ar + s¥)[jap] — (A3 + S3)[jke]} (A, + S])
+ {4 + sk)[jay] — Ay + sy)[jkal} (45 + S8)

+{ag + spliy] — (@p + SH kvl (ag+ §)

1
== [aBy], (43a)
n
2
R;Si[jak] = 525/ + n% R, R, —11—1—2—7;2—1 Ooes (43b)
X e nt —13 o,
(44] + S§) S/ SER, = —o—= SiR,, (43¢)

and obtain, after some calculation the eigenvalue of I5:
I Ip) = {Js —[(n2 —8)/12n2] Js}'ﬁ) (44)

D. Invariant I of SU(n)

The calculation becomes very cumbersome and
tedious for this invariant, so it will be omitted, but we
indicate an indirect method which allows us to reach
the result in an easier way. Indeed, [; expression,
from (34), can be written

Iip) ={Js + £, (apuo)(H, + R,)(H; + Ry) (B, + R)
X (Hy + R,)+ £,(ap) (H, + Ry) + £, 1p). (452)

We will not give the long expressions of £, £,,and
£4. On the other hand we write a priovifor I:

Iip) ={Jg + h(n)dy + gm)JG + f(n) J,}p),  (45b)

where h(n), g(n), and f(n) are three functions which
we want to determine. By identifying [(45a) and
(45b)] we have

£ (2Bud) = h(n)[apilljus] + g(n) 6,40,
«sz(aﬁ) = f(n) O

Multiplying the two members of (46a) by the following
expression which brings in the symmetry the indices
a, B, u,and &,

(46a)
(46b)

TR RyR, 65 + R;R R0, +R,R R, 5y,

+ RyR,R,0,). (47)
We obtain, after all calculations,
n? —13 ) 1 (nz—l) <n2~4>
~T—° R SxSj —— - \r
1252 «"7 Y 36\ 2m2 252 Y
= hm)R.S%8i + Z=L sm)R
- n oty Yy 24 F4 ¥
and
2 _4
_ n2-—13 -2 (48)
hin) = — '—‘lz—nz— , &)= 61t

In the same way we calculate f () and finally obtain
for the J; eigenvalue

- n2 —13 n2 —4
lslP) =76 = 12n2 o= 6nt /8
(2 ~4) (12 +8) | |5
— 2). (49)
72014 2

In conclusion, we must remark that we have not

given the general eigenvalue of the 7, invariant of
SU(n)as function of the K, (k' < k). We have limited
our work to the J; invariant which, in fact includes all
the interesting physical problems. For higher in-
variant operators, it would be easier to express the
Biedenharn's invariant in terms of the Gel'fand5 in-
variants whose eigenvalues are known.6
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The Spin Spectrum of an Unstable Particle
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A state vector (vector-valued distribution) of an unstable particle can be a 3-momentum eigenvector in at
most one inertial frame as a consequence of the necessary width of the energy spectrum. We investigate this
frame dependence of momentum eigenvectors of unstable particles and demonstrate that:

(i) 1t is compatible with the principle of relativity.

(i1} It leads to a distinction between two ways of defining the spin of the particle which are equivalent for

stable particles.

(iii) One definition, called kinematical spin, yields a precise value, and is determined by considerations of de-
tailed balancing and other means of counting the degeneracy of the momentum eigenvectors.

(iv) The second definition, called dynamical spin, need not yield a sharp value, is determined by the dynamics
of the decay process, and is measured by observing angular distributions of decay products.

It is shown that an unstable particle with vanishing kinematical spin (pion) may have a small admixture of non-
isotropic angular distribution of unpolarized decay products in the rest frame of the decay products. The order
of magnitude of the effect is estimated and the coupling between the mass and spin spectrum is studied in the

case of local interactions without derivative coupling.

1. INTRODUCTION

In this paper I shall consider some of the consequen-
ces that follow, in a Lorentz invariant quantum theory,
from the proposition that one can, in any inertial
frame, identify detect or prepare an unstable system
prior to decay at any instant of time. This is the
basic premise of this study. At the risk of belaboring
an obvious issue I will dwell for a moment on the
meaning of the premise.

Consider a neutron. It is conventionally assumed,
and we adhere to the position that one can talk
meaningfully about the distinction between the prob-
ability for finding the neutron, a single particle to
exist on one hand, and the probability for finding, not
the neutron, but its decay products, a proton electron
and antineutrino, to exist on the other. These proba-
bilities change with time but at any time the distinc-
tion between the unstable parent particle and its de-
cay products is clear cut. The premise then asserts
that for any given instant in any given inertial frame
there exist states of this system in which the proba-
bility for finding the unstable neutron (or more
generally the parent particle) is momentarily unity
and the probability for finding the decay products is
momentarily zero.

Since a neutron lives so long and since we have no
reason to regard a neutron as a composite system of
its decay products prior to decay, the application of
the premise here seems unobjectionable. The appli-
cation of the premise becomes more doubtful as the
lifetime decreases towards the point where we begin
to doubt the reliability of all our spatio-temporal
concepts and as the contribution of the decay pro-
ducts to the structure of the parent particle becomes
more dominant.

Lurgat! has explicitly challenged the application of
our premise to the strongly decaying hadronic reso-
nances, denying to them a state vector description
altogether and the possibility of ever being detected
more directly than through the correlations among
the decay products. He gave a quantitative form to
this notion by introducing the concept of the integrity
of an unstable system. If the unstable system has
already decayed, its integrity is exactly zero. If it
has not decayed, its integrity is exactly unity. For
all other situations the integrity is not sharp but has
an expectation value lying between zero and one.
Lurcat suggests that the hadronic resonances always
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have integrity zero. This means that the concept of
lifetime, as such, does not apply to hadronic reson-
ances and that time dilation of the lifetime of the
ultrahigh energy resonances could never render them
detectable prior to decay. Such a restriction on the
possible outcome of future experiments is very hypo-
thetical and may have the character of raising a cur-
rent technological limitation to the status of a funda-
mental principle.

In terms of the integrity our premise may be stated
as declaring the existence, for any instant of time in
any inertial frame, of states, for any unstable system,
with integrity unity. The operator representing the
integrity is just that projection operator which pro-
jects onto the unstable particle states and annihilates
the decay products. Without embracing the premise
in its entirety, the reader can regard this paper as a
study pertaining to those metastable particles for
which the premise is at least an excellent approxi-
mation,

The premise has been widely employed in the litera-
ture2 (without the present degree of fanfare!) for dis-
cussions of the time dependence of the decay process
(deviations from the exponential law, etc.) and the
shape of the energy or mass spectrum. Such studies
may be construed as a development of the consequen-
ces of time-translational invariance applied to the
premise. In this paper we shall concentrate on the
application of Lorentz invariance to the premise and
the primary consequence of this will be the likelihood
of a spin spectrum (as opposed to a sharp spin) for
an unstable particle manifested in the angular distri-
bution of the decay products. The order of magnitude
of the width of the spin spectrum (barring selection
rules) will be shown to be roughly given by

AS ~ (/C) (Am/m),

where m is the expectation value of the rest mass of
the unstable particle, Am the width of the rest mass
spectrum, and v the speed of the particle in that
frame in which the system has unit integrity at some
definite time. The frame dependence of the effect
may be disquieting at first, but in fact is not in con-
flict with the equivalence of inertial frames or the
invariance of the theory under the Lorentz group.3

In TableI I have listed the values of Am/m for a
small selection of unstable systems. Clearly the
last four entries, or others like them, would seem to
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TABLE 1. Ratio of width of mass spectrum to rest mass for
several unstable systems.

Unstable system am/m
neutron 10-27
muon 1017
optical transitions in atoms 10-17
lambda hyperon 10-14
optical transitions in nuclei 10712
neutral pion 1077
neutral sigma hyperon 1076
excited nuclear levels 10-6
hadron resonances 1071

provide the best hope of detecting the effect in ques-
tion. However, the matter is not that simple. Spin
assignment experiments involving hadronic reso-
nances and excited nuclear levels are sufficiently
dirty, by virtue of an abundance of competing proces-
ses, that they proceed by searching for a dominant
harmonic contribution to the angular distribution of
decay products near the peak of the mass distribu-
tion. The quantum number associated with the domin-
ant harmonic is assigned as ke spin of the system in
question, and the residual angular distribution is attri-
buted to the competing processes. Furthermore,
theoretical considerations presented here will indi-
cate that the spin spectrum is coupled to the mass
spectrum in such a way as to suppress the wings of
the spin spectrum at the peak of the mass spectrum.
In the case of the neutral pion decay competing pro-
cesses are not a problem but the Bose statistics of
the two photon final state yield a selection rule so
that the proper estimate of the width of the spin spec-
trum is (v/c)? (Am/m)2.4 The neutral sigma decay
does look promising and will be studied in detail in a
later paper.

The relevance of these considerations to the pheno-
mena of the decay of the neutral X mesons and the
mass spectrum of the A, meson will also be consider-
ed in subsequent papers.

Thus far the expressions unstable system and un-
stable particle have been used as more or less inter-
changeable. For the rest of the paper I would like to
introduce a distinction. Henceforth, an unsfable sys-
tem is an enduring physical system which at some
instant in some inertial frame consists of just one
unstable particle. If the unstable system is left to
itself, then as time passes the probability for the
appearance of decay products increases and the prob-
ability for the presence of the unstable particle de-
creases. In the absence of measurements an unstable
system can exist forever, but it consists of a single
unstable particle for one instant at most. We will
always work with Heisenberg picture state vectors
which correspond to the entire evolutionary history
of the unstable systems under consideration. The un-
stable system state vectors, however, will frequently
be labeled by reference to the circumstances under
which the system consists of one unstable particle.

2. MOMENTUM AND SPIN OF UNSTABLE
SYSTEMS

Let |a, {)) be a Heisenberg picture state vector for
an unstable system consisting of one unstable par-
ticle at time #; and in the instantaneous single-par-
ticle state denoted by @. Translation invariance as-
serts the existence of the spatially translated states
|y, t,) (the physical system is translated by the dis-

placement A), all of which also consist of one un-
stable particle at the time #,. By superposition we
can then construct the eigenvectors of the translation
generators which we identify as the momentum eigen-
vectors. Neglecting internal degrees of freedom, we
have

Ip, t < [d3reW/mpaay 1), (2.1)
We cannot construct energy eigenvectors for unstable
systems by superposing unstable system state vec-
tors obtained by performing time displacements on a
given one. Such a superposition could indeed yield an
energy eigenvector, but it would not describe a sys-
tem consisting of one unstable particle at any definite
time. Unlike the case for single stable particles,
time displacements have dynamical effects on un-
stable particles even when the latter are in momen-
tum eigenstates. Consequently, unstable systems can-
not exist in energy eigenstates.

In itself this is a familiar fact commonly referred to
in terms of the energy or mass spectrum of the un-
stable system. When coupled to the existence of
momentum eigenvectors in a Lorentz invariant
theory, however, it leads to a result that is perhaps
not so familiar and is universally ignored in practi-
cal calculations of decay amplitudes. The Loreniz
transform of an unstable system momentum eigen-
vector is nol a momentum eigenvector.

Under a pure Lorentz transformation the energy and
momentum of a system change according to

p) = (1—v2/c2yV2(p, +vE/c?), (2. 2a)
P, =D, (2. 2b)
E' =1 —02/c2)V2(E + vep). (2. 2¢)

If we initially have the uncertainties Ap = 0, AE = 0,
then after the transformation we have
App = (1—v2/c2)"V/2yAE/c?2,

Ap, =0, (2.3a)

AE’ = (1 —v2/c2)1/2AE, (2. 3b)
and the system does not have sharp momentum in the
new frame.

The equations indicate the induced spread in the
momentum spectrum is proportional to the original
spread in the energy spectrum, and for small Lorentz
transformations, v/c << 1, performed on metastable
particle states the induced spread in momentum
would be extremely difficult to detect. Nevertheless,
for purposes of theoretical analysis the concept of
the frame dependence of momentum eigenvectors for
unstable systems is important, In particular it im-
plies the nonexistence of a sharp rest frame for any
unstable system with sharply defined nonvanishing
momentum in a given frame. This in turn renders
the conventional technique of determining the spin of
an unstable particle by transforming the observed
angular distribution of decay products to the rest
frame of the parent particle approximate in prin-
ciple. In other words, even if the laboratory momen-
tum of the unstable system is exactly known, the
transformation to the rest frame is not sharply de-
fined since it depends on the energy as well, which
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cannot be sharp. More generally, two momentum
eigenvectors for an unstable system with distinct
momentum eigenvalues cannot be transformed into
one another by a transformation in the Poincaré
group. This is one sense in which the states of an
unstable system do not form an irreducible represen-
tation space for the Poincaré group.>

In passing let us note that there should be no puzzle-
ment over the fact that the transformation equations
(2.2) indicate that the energy uncertainty always in-
creases under a Lorentz transformation from the
case Ap = 0. At first this may seem to conflict with
the dilation of the lifetime displayed by energetic
metastable particles. Thus from AEAf & % we may
expect that as the lifetime increases AF should de-
crease. But lifetimes ave well defined only for mo-
mentum eigensitates and comparing two such eigen-
states we have

E, = 0} + m2c2)V2c, E,= (p} +m2c2)V/2¢

and for the uncertainties
AE, = (mc2/E,) Amc?2,
AE, = (mc?/E,) Amc?2,

Ap, =0,
Apy= 0,

The energy spread of the more energetic momentum
eigenstate is the smaller. This consideration indi-
cates again the distinction, in the case of unstable
systems between pairs of momentum eigenvectors on
one hand and pairs of states connected by a Poincaré
transformation on the other. Unlike the stable case
the former pair is not a special case of the latter.

As the frame dependence of momentum eigenvectors
is pursued further on in this paper, it will come to
appear very likely that in a cerfain sense unstable
particles do not possess a definite spin any more
than they possess a definite mass. The sense in
which this appears relates to the angular distribu-
tion of the decay products in the rest frame of the
decay products. In fact it will become apparent that
for unstable systems one can distinguish two ways of
defining the spin of the system which in the limit of
infinite lifetime become identical. I have chosen the
names kinematical and dynamical spin for these two
definitions since the former depends solely on the
degeneracy of the momentum eigenvectors while the
latter involves the behavior of the states of the sys-
tem under the action of the Casimir invariant opera-
tors of the Poincaré group. It appears that spin de-
terminations based on detailed balancing arguments
and the like, involving as they do the counting of de-
generate momentum eigenstates, determine the kine-
matical spin while the angular distribution of decay
products is related to the dynamical spin. In a per-
turbative theory of the decay process the kinematical
spin is identical with the spin of the particle in the
stable limit while the spectrum of the dynamical spin
is determined by the details of the interaction produc-
ing the decay. If the kinematical spin is nonzero, then
the representation of the Poincaré group carried by
the states of the unstable system is nof multiplicity
free.}

3. HYPERPLANE-DEPENDENT STATES OF
UNSTABLE SYSTEMS

To carry out conveniently a discussion of the conse-
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quences of Lorentz invariance applied to the frame-
dependent concepts of instantaneous or momentum
eigenstates of unstable systems, we must find an in-
variant way of describing such states and a manifestly
covariant way of labeling the state vectors that cor-
respond to them. We do this by following the histori-
cal precedent set long ago by Tomonaga and
Schwinger® and since adopted by many authors for
various purposes. We note that an instant of time in
a given inertial frame uniquely determines a three-
dimensional section of space-—time which in any iner-
tial frame may be described as a spacelike hyper-
plane. The hyperplane is not instantaneous in those
frames moving relative to the given one but is in-
stead tilted with respect to the time axis. The in-
variant form of the assertion that an unstable system
consists of an unstable particle at some given time in
some given inertial frame is that the unstable system
consists of an unstable particle on a particular space-
like hyperplane, viz., that hyperplane defined by the
giveninstant in the given frame. The hyperplane itself
is an invariant geometrical construct and the asso-
ciation of the unstable system with a particular hyper-
plane removes the need to employ any particular in~
ertial frame in referring to it. The manifestly covari-~
ant labeling of the state vectors used in arbitrary
inertial frames to describe unstable systems is
achieved by employing the timelike unit vector 7,,
which defines the direction normal to the hyperpiane
in space-time, and the parameter 7, which measures
the interval between the hyperplane and the space-
time origin of the coordinate system along a line
parallel to 7, . The intersection of the hyperplane
with the line in question is at the point 70,,and all
the space-time points lying in the hyperplane satisfy
the equation of the hyperplane
X” ’np =T, (3. 1)
Every spacelike hyperplane appears instantaneous in
some inertial frame and in that frame we have Ny =
n{® = (1,0,0,0) and 7 = 7 = cf, where f, is the
time of the instantaneous hyperplane.?

Let {a, f,) denote the Heisenberg picture state vector
for an unstable system consisting of one unstable par-
ticle at the time ¢ = {; (the symbol @ denotes the in-
formation needed to describe the instantaneous con-
figuration of the unstable particle). In a frame rela-
ted to the given one by the transformation,

Xp = AEXQ) +a, 3.2)
the Heisenberg picture state vector for the same
system is

(3.3)

where 0, = AZn{® = AQ and 7 = 7O + abn, = cfy +
atn, describe the hyperplane on which the unstable
particle exists as viewed in the new frame. The
unitary operator U(A, a) inducing the Poincaré trans-
formation on the Hilbert space is the familiar one,

(3.4)

1l

la(A,a);n, 1) =UA, a)la,ty,

UA,a) = eiBelt/h gmiM,  WwhV(A)/ 2k

and the symbol a (A, a) denotes the modified descrip-
tion of the unstable particles configuration on the
hyperplane. From Eq. (3. 3), which may be construed
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as a definition of the symbol on the left-hand side,
and the group property of Poincaré transformations
it follows that

fa(A,a); An, 7 + aAnp) = UA,a)la;n,7). (3.5)
Now consider the special case in which the original

state is a momentum eigenstate, i.e., (neglecting
internal degrees of freedom)

‘art0>: ‘p,to>) (36)
where

Pip, iy = plp, ty- (3.7a)
From

U 1(A, a)PH UA,a) = Al‘j P, (3.8)
we find

K“(n)\k;n,'r) :k“lk;‘n,‘r), (3.7b)
where 3

K(m =P —nnP, k, = 121 Alp, (3.9a)

n, = AB, T =cly +an, (3. 9b)
and

Ik;m, 1) = U, @)l p, ty) e *yuat/n, (3.10)

We see that under Poincaré transformation the in-
stantaneous momentum eigenvector becomes a hyper-
plane dependent eigenvector of that part of the total
4-momentum that lies in the hyperplane, i.e., K, .
Just as the original state does not have sharp energy,
so the transformed state is not sharp in the part of
P, normal to the hyperplane, i.e.,n,7P. T will some-
times refer to 7P as the hyperplane energy or the
hyperplane Hamiltonian while K, (1) will be referred
to as the hyperplane momentum. Note that the 4-
vector eigenvalue k“ has only three independent com-
ponents since from its definition (3. 9a) we have
kim, = 0. (3.11)
Finally, if we consider a general Poincaré transfor-
mation on the vector |&;7,7), we obtain

et/ k[ Nks An, T + aAm) = U(A,a)lk;0,7). (3.12)

With these transformation equations for the hyper-
plane momentum eigenvectors under our belt, we can
be more explicit about the meaning of the cryptic
symbol a (A, a) in Eq. (3.3), (3.5). Again neglecting
internal degrees of freedom, suppose

la,t) = [asp am)lp,iy). (3.13)

Then
la(A, a);n,7) = U, a)| a,ty)

= [a3 a(p) U, a)lp, 1)

= fd3p a(p) ete/k|kyn, 1)

= [asks(nk) a (A1) eier ks n, 7, (3.14)
and we see that

Oy ,0) (R) = 0 (A71R) eke/h, (3.15)

Again from this case where we begin with the instan-
taneous state we have the general result

la(A,a); An, T + aAm)

= [d% s(kAn)a ( &) ks AN, T +aAn),  (3.16)

where Eq. (3. 15) holds.

4. DECAY AMPLITUDES

We will consider the decay of an unstable particle
with no internal degrees of freedom into two stable
particles also devoid of internal degrees of freedom.
In the case of the stable decay products the absence
of internal degrees of freedom implies that the par-
ticles are spinless. For the unstable parent particle,
however, such a conclusion would prejudge one of the
major issues under consideration here. In fact we
will find that the hyperplane dependence of the un-
stable system state vector enables the angular distri-
bution of the decay products to deviate from isotropy
in the rest frame of the decay products.

Let the initial state be |k;7n,7) and the final state be
(py,05(+)], and eigenvector of the total 4-momentum,
(b1, bp(MI B, = (by, Py (H) (By +P2)p, (4.1)
with the (+) signature indicating that in the infinite
Julure the system consists of two stable particles

with sharp 4-momenta p;,p,. The probability ampli-
tude for the decay is

(b1, 0o (F) k31, 7).

Strictly speaking, of course, the initial state should be
normalized by smearing in 2 about some central %,
with a sharp distribution, The purpose of the present
general investigation, however, will best be served if
we concentrate on the idealized amplitude given above,
the kernel of the realistic amplitude as it were.

Since both the initial and final states are eigenvectors
of K, (n) = P, — n,nP, it follows that the amplitude
must be proportional to the three-dimensional delta
function of the hyperplane momentum. This is a
covariant generalization of the Euclidean three-
dimensional delta function and is given by

83 (by + Dy — k) = (2mh)3/2 [ax 6(nh) €Ny B kY n,
(4.2)

It constrains % to the value

ky = (py + Py)y — by + MP). (4.3)

The 7 dependence of the amplitude can be determined
from (4.1) and

|ksn,7) = eiTn®/h|k;n, 0). (4.4)
Thus
(bysPo(F) k3, 7) = efTprnnyt (py, p,(+)|k;n, 0).
(4.5)
Combining these results, we have
(bpsbo(H) R m,7)
= 6713(1’1 +py — k) ettt up/h F(by,05m)s  (4.6)

where %2 does not appear in § because of (4.3). Now
¥ is a Lorentz invariant function of its vector vari-
ables and so can be written as
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F = F(PpyPy; b1, MP), (4.7
where the squares of the vectors are suppressed
since they are not variable. In a careful calculation
of the decay probability from a normalized initial
state sharply peaked about some %, hyperplane
momentum, the result would be proportional to the
square of the absolute value of the form factor ¥. In
first-order perturbation theory the 1 dependence in
¥ disappears and we have the conventional form fac-
tor for the 0 —» 0 + O transition which yields an iso-
tropic angular distribution in the rest frame of the
decay products. Clearly the 1 dependence will allow
deviations from isotropy. For example, consider an
expansion of § in powers of (np1 + npz) and (np1 —
mPy),

37(1’1172;71171, 77172) = Fo(p;lpz) + (ﬂpl + npz)Fl(Plpz)

+ (Upl — npg)Fz(plpz) Foeee, (4. 83.)

In the rest frame with p, = p=— p,, we have

¥F= FO(‘DIOPZO + Pz) + 770(1’10 +p20)F1(1)10p20 + Pz)

+ [1g(Pro — Pag) — 20°PIF3(D10Pp0 +P2) + - -+
(4.8b)
and the term proportional to #*p describes a P-wave
angular distribution. If F, = 0,thereisanS=1
component in the spin spectrum of the unstable par-
ticle.

Notice that if the decay products are identical par-
ticles satisfying Bose statistics, then § must be sym-
metric under the interchange p; < p, and consequent-
ly odd powers of (np; — np,) cannot appear. In such

a case the D wave is the simplest nonisotropic angu-
lar distribution one can have, and the nonvanishing
components in the parent particle spin-spectrum
would all be even.® This would very likely narrow the
r.m,s. width of the spin spectrum since the strength
of the higher spin terms in the expansion is likely to
decrease rapidly. But more of that in a later section.

Consider now the case which conventionally would be
described by saying the parent particle has spin one,
i.e., the initial state is characterized not only by
hyperplane parameters and a momentum eigenvalue
but also by a polarization vector €, satisfying 7€ = 0
and €2 = — 1. Also the state vector is linear in €.
Thus we have

(Drpy(H) 1R, €51, 7)
= 03(py + Py — k) €TOR IOV REHT, (1, py5m), (4.9)

where 3, is now a vector function. The most general
form for §, here is

3:“ (plypz; n) = (Pl + pg)“Fl(plpz; by, 7IP2)
+ (Pl - pz)pfé(plpz; by, ﬂPz)

+ €0 PEPYIF (D1Pg; 01, M) (4.10)
In this case of the 1 - 0 + 0 transition the compari-
son with the results of the conventional treatment is
more intricate than for the 0 —» 0 + 0 transition. It is
not sufficient merely to abolish all 7 dependence, for
that still leaves us with two form factors F; and F,.
In fact, since the definition of the polarization vector

J.Math. Phys., Vol. 13, No. 5, May 1972

FLEMING

€ employs the hyperplane vector 7, one cannot con-
sistently abolish 1 dependence. The correct limit is
obtained by realizing that in the conventional treat-
ment the parent particle is assumed to exist at a
definite time in the rest frame of the decay products.
In the present formalism such an hypothesis is
characterized by giving 1, the value

77‘1 = (pl +p2)“/[(p1 +p2)2]1/2- (4-11)
In combination with the constraint on € this renders
F, the only form factor contributing to the decay
amplitude as the conventional treatment demands.

If the reader will now reinspect the equations associ-
ated with the first example, i.e., the 0 > 0 + 0 transi-
tion, he will see that there too the conventional re-
sults are recaptured when (4. 11) is satisfied. Since
{4.11) is not an approximation as such, but rather a
possible value for 7, it follows that unstable systems
with sharply defined rest frames [the physical condi-
tion determined by (4.11)] do not display the angular
distribution effects we are considering. In other
words we can never observe these effects from un-
stable systems that are known with great precision
to decay at rest. For to know this is to know that p =
0 precisely for the parent particle. But that can only
be in an instantaneous state, i.e., one withn =0, 74
1, and in such a state p; + p,=p = 0 and (4.11) is
satisfied. This consideration displays the source of
the velocity dependence of the spin spectrum refer-
red to in the introduction.

5. KINEMATICAL AND DYNAMICAL SPIN

There exist at least two distinct approaches to the
concept of spin in relativistic quantum theory which
yield equivalent results when applied to stable par-
ticles, but which are not equivalent when applied to
unstable particles.

One approach employs the concept of the degeneracy
of the momentum eigenvectors under the Euclidean
group.? Consider such a vector, |p, @), in which o
denotes information besides the momentum and inde-
pendent of it which may be needed to determine the
eigenvector uniquely {we suppress the time variable
which would be required in the case of an unstable
system). Now under a rotation R the momentum
eigenvalue changes to Rp and the momentum eigen-
vector to UR)|p, @). The question of degeneracy is
the question of the equality

UR)p,a) £ |Rp, )

with the same o on both sides. If the equality always
holds, we say the system has spin zero. If not, we
look for the number of linearly independent eigen-
vectors |p, a,) such that we always have

N
U(R)|p, a,,) =mZ=% SDm;«,(R)llzp’ am>7

(5.1)

(5.2)

the D being some R dependent coefficients. Writing
the integer N as 2S + 1, we say the system has spin

S, and for the case p = 0 we find
J2|0,0,) = h2S(S + 1)|0, a,). (5.3)

By not involving the time or transformations to mov-
ing frames, the discussion is equally applicable to
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Galilean or Lorentzian kinematics and to stable or
unstable particles. It can, furthermore, be genera-
lized to apply to unstable particles on arbitrary hyper-
planes in a manner leaving the hyperplane fixed
throughout the discussion. Consequently, to distin-
guish this approach from the following, I refer to the
defined spin as kinemalical spin.

The second approach to spin is concerned with the
behavior of the states of the system under transfor-
mations which, interpreted actively, have dynamical
content, i.e., time displacements and Lorentz trans-
formations1? or more generally those that change
the hyperplane. The simplest expression of this spin
concept is in terms of the Casimir invariants of the
Poincaré group. For stable systems we have

P2lp,a)=m22|p, a), (5.4a)

W2ip, a) = — m2c2h28(S + 1)|p, a), (5. 4b)
where .

W, = 3 €48, M*PPY (5.5

ig the Pauli—Lubanski vector. For unstable particles
which do not possess a precise mass we follow Lur-
¢atl and write

W2 + r28(S + NP2}k, a;n,7) =0 (5. 6)
as the defining equation for the system to have dyna-
mical spin S,

Now there always exists Lorentz transformations
which will connect a given stable particle momentum
eigenvector with a rest frame momentum eigenvec-
tor with p = 0. But in the rest frame W2 = — PgJ2
and the invariant equation {5, 4b) is equivalent to
(5.3). For stable particles the kinematical and dyna-
mical spin are always equal.

As we saw earlier, however, the transformation of
an unstable system momentum eigenvector to a
sharp rest frame is not possible if the initial mo-
mentum was nonvanishing. Consequently, the equi-
valence of the kinematical and dynamical spin cannot
be demonstrated for unstable systems.

For a clear example that the two spins are not equi-
valent consider a case in which the kinematical spin
is given as zero. In the terms of the covariant for-
malism this means that the hyperplane momentum
eigenvectors are nondegenerate and consequently
they can be denoted by |%;7, 7); no other symbols are
necessary.

The spin operator associated with the kinematical
spin can be constructed and seen to vanish in this
case. We first define formally a position eigenvec-
tor for the unstable system on the (1, 7) hyperplane

ly;n,7) = @nh)3/2 [d4k s(mk) e/ k;n 1), (5.7)

where 7y = 0, For a stable system {or more pre-
cisely an elementary system in Wigner's sense) of
vanishing spin this state is the hyperplane generali-
zation of the Newton—-Wigner position eigenvectors
which were defined on instantaneous hyperplanes 11
Since the transform defining these position eigenvec~
tors on hyperplanes can be inverted, they form a
complete basis in the same sense that the momentum
eigenvectors do and they are orthogonal,

631

Grym,rlysn, ) =630y —y) (5.8a)
iff

E'sn,7lk;m,7) = 030" — B). (5. 8b)
We can, therefore, define, over the subspace of un-
stable system state vectors on the (1, 7) hyperplane,
a position operator @,(n,7) by

Q. )ysm, 1) =y, ly;n, 7). (5.9)
Now consider a homogeneous transformation of the
Poincaré group which leaves the hyperplane orienta~
tion n invariant. If the hyperplane were instantaneous,
such a transformation would be a rotation, and so we
may call this one a hyperplane rotation. The genera-
tors of such a three-parameter transformation are
just the projections of the Mw orthogonal to 7,, and
they may be expressed in the convenient form
{5.10)

%6 M”?"m,

Jy () =— Mo By

which is clearly the hyperplane generalization of the
total angular momentum operator. We can now ex-
press the kinematical spin operator defined in the
same space as @,(n, 7) by the equation

() — €,44,Q°(n, TIKE(NY = S, (n, 7).

The kinematical spin vanishes in the sense that

(5.11)

5,0, Dly;n,1)=0 (5.12)

as a direct consequence of

UA,a)ly;n, ) = Ay + a— An(aAn); An, 7 + aAn).
(5.13)

From completeness within the subspace we also
clearly have

Sp(n)T)lk;T}’T> = 0. (5~ 14)
If the dynamical spin were identical with the kine-
matical spin, then the Pauli~Lubanski vector

W, = %emByMaBPr (5.15)
would yield zero also when applied to the hyperplane
momentum eigenvector. But from

P ksm,7) = (!ﬂ — ikn7%> VB;m, 1) (5.16)
and
M8k, 1) = ih (ko -0 — pb 2
r e 3k, ok,
tgel g S Weym,r)  (5.17)
a1 .}
we get
W, kin,7)
——ihe ne - by inke 0 gy S\ pn Lo
= HoBy ans akB n aT ,7}, = V.

(5.18)

The essential point is that the effect of the kinemati-
cal spin operator is determined solely by the be-
havior of the state vector under transformations that
leave the hyperplane unchanged, while the Pauli~
Lubanski vector and the Casimir invariants of the
Poincaré group have an effect depending on the hyper-
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plane dependence of the states. Furthermore, as we
saw earlier, the hyperplane dependence of the state is
precisely the source of the deviation from isotropy
in the decay product rest frame angular distribution.
For a stable system a momentum eigenvector on one
hyperplane is a momentum eigenvector on any hyper-
plane, and this renders the hyperplane dependence
trivial and forces equality between kinematical and
dynamical spin.

We can pursue the spin content of the unstable sys-
tem further by applying (5.18) to Eq. (4.6). Thus we
have

oy W B 1,7 = — in By, (b, 1)y, 2y (9 3 1, 7)

and (5.192)
(by, Do (N WRI R 1, 7) = — h26(R, 0)2(py, Pp(H) k3 m, T),

(5.19b)
where

~ - 8 .y .. 0 0
wp(k, 7)) = epaﬁy(na'a—ﬁ;k — thke mrﬂ ~a—;>.

(5.20)

If we now expand F(py,py; 1) in powers of the compo-
nents of n orthogonal to p; + p, [more precisely, in
terms of basis functions of the little group of (p; +
by), defined on the hyperboloid 72 = 1], we will find
that the differential operator w2 just multiplies the
(s + 1)th term in the expansion by

s(s + 1)(p; + py)2.

The basis functions in question are the traceless pro-
jections of the symmetric, transverse products

hﬂ1~ .. h“s ,
where

h, =n, - Q 1Q/Q? (5.21)
and

Q, = (py +1y),- (5.22)
Hence the expansion of § has the form

o0

f*”(ia,pz;-n)=§)hu1-~-hﬂsFﬂr"ﬂs(q,Q,nQ). (5.23)

where the F's are symmetric, transverse (orthogonal
to @), traceless tensor functions of q, = (p1 - Pz)u’
Qp, and the scalar 7@.

The (s + 1)th term in the expansion of (py, p,(+)|%;
1,7} is

571’3(k—_Q)einQT/hh cechy, Fiveebs (Q,q;19),
# Hs

and we have

ky[53(k QIR Mh, < ok, Fi"Hs (Q, 45 1))

€papy1* a

ky@S(k — Q)emwﬂh “hy Pyt b

= [€pasy 1° a

+ 5,:?(12 — Q)einQT/h[EpaBynaﬁ th“ e hps]F“l'"“s

= [the€,pp, k* ak "787 83(k — Q)ezner/h]h by P
+063(k — Qe e, 0 N 877 QVh, - h“jFu;" .
(5. 24)
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where the replacement of 2 by @ inside the brackets
in the second term of the second expression is
permitted by the delta function, and the absence of a
third term in the second expressgion is a consequence
of the differential operator annihilating gry function
of 7@, in the presence of the delta function, and,
finally, the first term of the third expression follows
from employing the Fourier representation of the
product of the delta function and the exponential in the
first term of the second expression. From (5. 24) we
have

@, (&, Mo3(k — Q)eineri Iy -+ by Pl s

= 63(k — Qleine{w (@, n)kul‘ - hus]pul... K,
where {5. 25)
= d
GQ,m) = €uag 1 37 Q. (5. 26)
Similarly
wlk, 2030k — Q)e* 1T/ B Ry -+, FiyT s
=03(k — Qe w(Q, )%, - -+ by, JFres (5.21)
But
[‘h’(Qﬂ?)zhpl "hpS]F”l"'“s
=s(s + I)th“f by FHt b, (5.28)

which proves the assertion made just after Eq. (5. 20}.

The physical content of the preceeding derivation is
embodied in the two equations

Py, by () B0, 7) = 63 (k — Q)ein@r/h

x io) Ry -k, Fi'" bs(g,@;nQ),  (5.29)
s=0 ! s
by, ppNW2lEsm, )
= 83(k — Q)einR/k 2} [— h2s(s + 1)Q2)
s=0
X R+ h, F'hs (g, Q;1Q), (5. 29b)
L1 ]

which explicitly display the dynamical spin spectrum
of the kinematically spinless unstable system.

Several possibilities are open with Egs. (5. 29). First,
the unstable system may after all retain a definite
dynamical spin {all but one of the F functions vanish),
but it need not be the same as the kinematical spin
(in the present case we may have F = 0 and F¥ = 0,
for example). Second, the more likely arrangement
is that there is no definife spin but that all or most
of the F''s are nonvanishing;in other words, there is
a spin spectrum. Clearly the answer depends on the
details of the dynamical interaction leading to insta-
bility. We would expect a large class of “weak”
interactions to yield a dominant Fi, " s for s =
kinematical spin and smaller F's surrounding the
kinematical value. Buthow large this classis or how
bizarre an interaction must be to deviate from this
feature is an open matter requiring, for its resolu-
tion, the investigation of detailed dynamical models.

Although I shall not demonstrate the matter here, it
should be clear that if the preceeding discussion had
employed an unstable system with nonvanishing kine-
matical spin, then the analysis of the dynamical spin
content of the decay amplitude would have involved
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the addition of the kinematical spin to the “spin”
coming from the hyperplane dependence alone. In
particular a kinematical spin of s, and a “spin” s,
associated with the (s; + 1)th term in the expansion
of the hyperplane dependence will combine to contri-~
bute to all values of the dynamical spin from \so —
;1 to sy + s;. In this way for s, # 0 a given dynami-
cal spin value appears more than once in the analysis
of the states of the unstable system, and therefore the
representation of the Poincaré group carried by the
unstable system is not multiplicity free.?

6. THE PERTURBATIVE APPROACH TO
UNSTABLE SYSTEMS

In this section we will consider the relation between
the ideas so far expressed here and the more tradi-~
tional perturbative approach.? Thus we now regard
the instantaneous 3- momentum eigenvector |p,?) as
an eigenvector of a time-dependent “unperturbed”
Hamiltonian as well, i.e.,

Pyt)lp, 1) = (p2 + mgc2)V/2|p, 1) (6.1)

where m  is the unperturbed rest mass.

To generalize Eq. (6. 1) to arbitrary hyperplanes, we
must regard it as associated with the 3-momentum
eigenvalue equation

Plp,t) = plp, ), (6.2)
not withstanding the fact that the operator P is not
time dependent. The generalization, which has been
discussed before,”:12 ig effected by the defining equa-
tion

B (n,7) = U, a{AP (1)} U-L(A, a), (6.3)

where n, = AQ, 7 = ¢t + at,, and PO (1) = (Py(t), P).
This definition yields the transformation rule

U (A, a)B,OAn, T + aAn)U(A, @) = A, PO(n, 1)

(6.4)
and the relation
B, —n,mP = PO (n,7) — n,nP Oy, 7), (6.5)
so that
P, = PP(O) (m,7) +mn,V(n,7). (6.6)

In other words the perturbing interaction V modified
only that part of P“ which is parallel to N, - The
eigenvalue equations (6. 1), (6. 2) become

K“("))‘k;n,7> :kp‘k;ny7>3 (6.73.)
UP(O)(U;TH]@; 77,7') = angcz'_ kZIk; n;T>7 (6-7b)

and for some future purposes it will be convenient to
introduce the unperturbed 4- momentum

p, =k, +n, ymgcZ—k2, pZ=mZc?, (6.8
and the unperturbed 4- momentum eigenvector

|p;n,7) = einp/h k3, 1), (6. 9)
satisfying

PO (m,7)p;m, 1) = p, b3 m, 7). (6.10)

Besides the unperturbed generators of translations
we can also introduce unperturbed generators of
homogeneous Lorentz transformations. We already
have

. d
le,t>:zhp><55 Ip, 1, (6.11)
which yields
e(i/h)J-;Lelp’ t> — lp',t>, (612)

where
p' = n(ep) + cos(®)[p — n(-p)] + sin(d)( X p). (6.13)

The essential ingredient for completing the construc-
tion of the unperturbed generators of the Lorentz
group is that the time parameter ¢ of the eigenvector
is not modified by the transformation,i.e., the trans-
formation does not alter the hyperplane on which the
unstable system is defined but rather treats the sys-
tem as though it were stable ignoring the hyperplane
dependence. Thus we introduce

MP) = €50, MY =—MPE),  (6.14)
such that

e—[iM}f?l)(t)wP”(A)]/Zh]p’ £y = |Ap, 1, (6.15)
where

|p,t) = einoct/Mp, 1),

the instantaneous case of Eq. (6. 9)

It follows from (6.15) that the M9 (t) satisfy the Lie
algebra of the Lorentz group.

The generalization of the unperturbed homogeneous

generators to arbitrary hyperplanes is effected by
- 0

MO (n,7) = U, a) [MAM O(t) + a, APO) (1)

— a AABOW] U(A,a),  (6.16)

where, again, Ny = AB and T = ¢! + aAn. As a result
of this definition the M) (n,7) transform in accord-
ance with the rules,
UL (A, )MQ) (An,7 + aAn)U(A, a)

= Ay AMD (1, 7) + a, A PO (n, 7)

— a, AN B® (7). (6.17)

Now for each hyperplane (n,7), the 1?1(0)(17,7) and the
MS0)(n,7) satisfy the Lie algebra of the Poincaré
group, and so we may refer to the unperturbed Poin-
caré gvoup on the (n,71) hyperplane. The unitary
operators for these groups are the

UOY(A, a;n,7) = B0 Gunab/h i O, e BU(a)Y/ 20

3
(6.18)
and they satisfy

UONA, a;n,7T) p;n,T) = eierb/k | Ap;m,7), (6.19a)
which is to be contrasted with
UA,a)lp;n,7) = etas/h{Ap; An, T + aAn) (6.19b)

for the full Poincaré group operators.

Just as the translation generators P, and 0 (1,7)
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differ by a term parallel to 7, [see Eq. (6. 6)] so the
defining Egs. (6.14)-(6.16) yield the form12

M, =M, 7) + n,U,(n,7) — 0,0, (n,7), (6.20)

where the U, can be chosen to satisfy nU = 0 without
loss of generality. '

From (5.16) and (6. 9) we have
. — 5 a .
B, lpsm,7) = <Pp — ihn, g> 1b;m,7),

which when compared with (6. 6) and (6. 10) yields

(6.21)
vin,m)lp;n,7) =k 58; lp;m, 7). (6.22)

Similarly, from (5. 17) and (6. 9), we have

, ? ? ? ?
My lp;n,T) =ih <.0,L p,— +n, — — 1 )

r opr Mag Y oome
X |p;m,71), (6.23)
which, when compared with
0 0
MO (n,7) p;n,7) = ik < — —p ——) lp;n, 1,
O (m,7) b5, t"apv s o) PTG e
which follows from (6. 19a), yields
., 0
%(H,T)lﬁ;nﬂ-—-zhm‘ﬁm,ﬂ, (6-25)
where
0 0 0
2 =L g9 (6. 26)
ot anH o

is the differential operator that leaves 7, on the unit
hyperboloid. Thus we see that the dynamical effects
of the interaction rendering the system unstable are
embodied in the relativistic potentials V(n,7) and

U, (n,7).

It follows from the definition of the unperturbed Poin-
caré group that the kinematical spin of the unstable
system is determined by the Casimir invariants of
the unperturbed Poincaré group. Thus from

Jm2lp, =nme;n,7) =0 (6.27)
we obtain

W, 1)2|p;nT) =0, (6. 28)
where

WO, ) = — 4 M @280, 7)PON(, T) (6.29)
because
|p;n,7) = UOXA, 0;0,7)1p, = 1,mec;,7), (6.30)

where p, = A2n,myc. More generally from

J, (21D, = n,mac, a;n,7)
=— h2s(s + 1)|p, = nymqc,a;3m,7)  (6.31)
and
UOA, 030, 7)1, = npmoc,a;n,T)
%) Ug, (P, M)\ P, B3 1,71, (6.32)
we obtain o

W0 (n,7)2|p, a5, T) =~ mic?h?s(s + 1)|p, a; 17,(‘%).33)
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But from (5.15) and (6. 6), (6. 20), (6. 28) we have

Wﬁ = W;SO) (77,7) - %€paﬁy
X [M (OB (1, 7)yprV (n, T) + 20U 8 (n, ) P ©(n, 7)],
(6.34)

and we see again that outside of a particular dynami-
cal model (specification of V and UL) we cannot say
whether the dynamical spin determined by W, will

be equal to the kinematical spin determined by W(®
(n, 7) or will be sharp at all. It would seem to re-
quire a precise relation between V' and Up to guaran-
tee equality between the kinematical and dynamical
spin. This relation will be investigated for a local
field theory model in the next section.

I will close this section with a derivation of the action
of the full Poincaré group operators on the unper-
turbed-hyperplane-dependent Poincaré group opera-
tors. In the case of the full Poincaré group we know
that

U~1(A, a)P“ U,a) = AYP

(Tl 724

(6. 35a)

U A, a)M UM, a) = AYAPM,, + @ AP, — a, ), P,

and that (6.35D)

U-1(Ay, an)U(Ay,a,)U(Ay, ay)

= U(AR A Ay, A A3y + 0 — @)

_ ew-l (A z,az)I"‘lI(Az,az)all‘/h e—w'l(A 2eIM,, UL 28w k(A 2k
(6.36)

By simple analogy, therefore, we conclude from (6. 4),
(6.17) that

U 1Ay, a)U@ (A, ay; 0, 7Dy, a,)
— iU 3 PO T VKA 0 )al/

x g UM p@IMO) (0, TNV (A praw BV () 21

= UONASIA Ay, A (Aay + ag — ay);m,T)  (6.37)

where 7" = A,n, T/ =7 + aA,7.

7. DECAY VIA LOCAL INTERACTIONS

In this last section I shall examine more closely the
case of the decay of a kinematically spinless par-
ticle into two spinless stable particles. At a certain
stage in the calculations the interactions responsible
for the decay will be assumed /ocal in a certain
sense.

We begin with the decay amplitude

(P10, (P50, 7)
— 5.;3'(?1 + Py — p)ei(np1+np2—np)r/hgy(p1p2; npl’nf.?)’l)

where {py, b,(+)| is the outgoing scattering eigenvec-
tor of the total 4-momentum with the two stable spin-
less particles possessing 4-momenta p,, and p,,. If
V(n,7) is the potential responsible for the decay in
the sense that the initial state |p;7,7) is an eigenvec-
tor of P®) (n, 7), where

= PO(@,7) +1,V0,7), (7.2)
then the final state (p;,0,(+)| is related to an eigen-
vector of Pu(f’) (n,7) by
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(by, by (H)] =By, Dy (+)sm, 7|

X[I +V(n,7)np, +npy—nP —do)1] (7.3)

and the scattering eigenvector {p;, p,(+); n,7| of
P0)(n,7) is assumed orthogonal to the initial state.
Therefore, we have
by, Po(F)p;n7)

= (py, o (H); 0, 71V (0, 7)(py + Mpy — P — d0) 1

X |p;n,7). (7.4)

Next, to simplify the calculation, we retain the coup-
ling through V{(n, 7) of the two-particle scattering
eigenvector of £,(0)(n,7) to the unstable particle
states and to these alone. In other words,

(by, Py (+)sm, 71 V(n, 7)

~ [d4q 5.(q2 — m3e2)py, by (+);1, 7]

x Vin,7)lq;n,7m)%a;m,71. (7.5)

Upon substituting this into (7.4) and writing2

g;n, 7! (mpy + npy — nP — io) 1 p;nT)
= 2np63(q — p)npy + npy — 1P — R (np; np; + 1ipy) 171,

(7.6)
where
2npd3(q — p)R (P, mpy + Mp,)
={gntlVin,1) +Vin,7)
x I, (n,7)(np, + mpy — NP —io)1
I, (m,m)Vn,7)lp;n7), (7.7)

the II's being projection operators onto the orthogo-
nal complement of the subspace spanned by the un-
stable particle states |p;n,7), we obtain

(b1, by (D) D30, 7) = Jd4q 6,(q% — m3e?)
X Py, Pp(+); 07|V (0, 7) g5 nT)20p83(g — p)
X[npy +mpy — 1P —R|?
=Py, (P 0T\ V(n, ) D51, 7)

X [Upl + np, — P —R(np, npy + Tl.bz)]"l- (7.8)

At this point we introduce the assumption of local
interaction in the form

Vin,7) =— [d% 6 — 7)8, ), (7.9)
where
L (6) = ePx/h gL, (0) e iPx/h
= eiIKMYh g, (n7)e KD/, (1.10)

This yields
(py, po(+);n, 7|V, 7) P, m,7)
—_ fd4x 5(nx — 1) e N APy - nnp rupymn P/ h
X Py, o (+); 0, 1L 0, T) D5, 7)
—— [avy s(my)e bWk
x <p1?p2(+); T]’ T |einPT/h£int(0) e“iTlP’lfh Ip; TI, T>

== @630, + by~ )
X (py, by(+); 1, 0] et PO OY/R g (0)
X e‘inP(")(n,O)r/h Ip, n, 0)

=— (27h)3 83(py + P, — p)etnrnry ) T/h

X (1, Do(+); 1, 01 L4, (0) P57, 0). (7.11)

The explicit n dependence left in the matrix element
of £;,,(0) can be eliminated if the local interaction
generates a U, (n,7) given by

U,(,7) =— Jd4x 5 — )0, — 0, m0) Ly (¥)  (7.12)
and is microcausal,
G(nx - ml)[£int(x)’°eint(x’)] = 0: (7. 13)
for any timelike 7,. These conditions lead to
[£4¢(0), U, (n,0)] = 0, (7.14)
and, since £;,,(0) is a Lorentz scalar, i.e.,
[£i1¢(0), M, ] =0, (7.15a)
we also have
[“Gmt(o)’qu(g) (n,0]=0. (7.15b)
But
p: An, 0) = o 1M HY 21 i 80,030k (a) 21 |p37, 0)
s ) - 270y s
(7.16)
and similarly for {p;,p,(+);n, 0!, so that
=Py, P5(+); An, 01£,,(0)lp;An, 0). (7.17)

The matrix element of the interaction Lagrangian
density then is a Lorentz invariant function of the 4-
momenta p;, p,, and p or

<p1,p2(+); n, Ol‘f'int(o) |P, n, 0) = F(pl,i’z;ppl;ppz), (7. 18)
where the dependence of F' on the masses my,#i,, and
my, is suppressed.

For the decay amplitude we now have

(b1, Po(H) D3 n,7)
= (27h)% 63 (b + by — p)e! PATIRTIOT/E
XF(Pli’z;Ppl,sz)[Tlpl + npz - T)P —R
X (np, mp; + npy)f 1.

At first glance it may seem that there can be no de-
viation from spherical symmetry in the angular dis-
tribution since 7, does not occur explicitly in F and
its appearance in the “energy denominator” never
involves np; — Mp,. This is erroneous however be-
cause the three-dimensional delta function induces n
dependence in F by forcing the replacement

(7.19)

p“ = (‘bl +p2)“ - 7’“ (77131 + 771’2)
+ 1, VmBe2 + (npy + np)? — (by + pp)2.

(7. 20)
Thus, in the presence of the delta function,
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F(pyby; Dy, 00,)
= F(P1p2;m%cz +P1P2 — "11’1(7)171 + 'l'lpz)
+ npy V(npy + Py)2 — A pip, + mie?

— npy(npy + np,) + mp, Dy + Mpy)2 — A--2),
(7.21)

where A =S —m3c? = (p; + p,)%2 — mfc2. It follows
from this that if the original F (prior to multiplica-
tion by the delta function) depends on pp; — pp, as
well as pp, + pp,, then the final F will depend on

1Py — np, as well as np; + np, and there will be an
anisotropic angular distribution in the rest frame of
the decay products. If the two decay products are
not identical particles, then it is unlikely that F will
be symmetric under interchange of p; with p,. But in
such a case (absence of Bose symmetry) F must de-
pend on pp; — pp, and there must be deviation from
spherical symmetry of the angular distribution in the
decay product rest frame. Of course, if the decay
products are identical, Bose symmetry will prevail,
and a dependence of F' on pp; — pp, can only occur
through even powers of the difference. This becomes
transformed into a similar dependence on 7p, — 1P,
and, as indicated in Sec. 4, the result is the appearance
of only even partial waves in the angular distribution
and only even spin values in the spin spectrum of the
parent particle,

On the other hand, inspection of (7. 20) and (7. 21) in-
dicates that no deviation from spherical symmetry in
the angular distribution can occur when A = 0, i.e,,
when (p; + p,)2 = p2 = mgc2. At this value of A
(usually the peak of the mass distribution) we have
conservation of 4-momentum from (7. 20), and (7. 21)
becomes

F(pybg; Dby, bD,) = F[2(m3 — m2 — m3)c2;
$m3 +m? —m3)c2; zmg — m? + m)c?]. (7.22)

This result displays again the fact that in first-order
perturbation theory the effect of interest can not be
seen since one treats the parent particle state like a
stable one (thereby eliminating explicit 7 dependence
in the initial state) and also obtains conservation of ,

T v [(mgc2— (my + my)2c2)(m3e? — (my — my)2c2)]V/2

GORDON N. FLEMING

total 4-momentum [thereby eliminating induced 5 de-
pendence of the variety occurring in (7. 21)]. For sys-
tems with a narrow width to their mass spectrum (so
that the observed values of A are small), we may
approximate (7.21) by a few terms in the Taylor
series expansion of the A dependence. If we retain
only first-order terms in A, we have

A OF by aF
=00 "5 Gip, a0 T By + by 98B |50
b, aF
T by + mp, 0ph, |20
LA 1 <6F aF
=Te0 T opb, T 2 app1+app2> 270

A nﬁl - Wz oF aF
( >A=o° (7.23)

4 by + b, \3pD, Db,

The last term only yields a nonspherical angular dis-
tribution in the rest frame of decay products where
the term becomes

A 7D, < 3F  F )
=0

2 770(?10 + on) appy - 839}52 (7.24)

The maximum value that | A| can have before the
energy denominator in the decay amplitude becomes
large enough to render the decay process negligible
is of the order of magnitude

| Alax~ 2m,T . (. 25)
At the same time, if I'/myc 2 << 1, then
P1g * Pyo ~ M€
and
|p1| ~ [(7}1(2)02 — (ml + mz)zcz)(mgcz
- {m; — my)2c2)|V2/2myc.  (17.26)

Finally the value of |9] /7, is v/c where v is the velo-
city of the unstable particle in that frame in which

the spatial 3-momentum is sharp. Therefore, the
order of magnitude of (7. 24) is

(7.27)

2 202
mycé ¢ 2m0c

where I have associated the quantity mZc?2 with the
derivatives of F' so as to give that factor the same
dimension as F itself. Since the F derivatives and
the estimate of |p; |/, + #,, varies with the dyna~-
mics and mode of decay, I take

(T/myc2)v/c)

as the natural dimensionless measure of the kine-
matical origins of the effect.

(7. 28)

I will close this section with a demonstration that in
the presence of local interactions without derivative
coupling the eigenvalue of Wu remains zero (if the

kinematical spin has vanished) under just those con-
ditions that we have seen to yield an isotropic angu-
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{
lar distribution in the rest frame of the decay pro-
ducts.

We start from (6. 34) into which we substitute (7. 9)
and (7.12) after noting from (6. 20) that

I, () = — $ €00, MOB(m, 7)1, (7.29)
and from (6.17) and (8. 35b) thatl2
(&, ), U, (n,7)] = ih(g,,— n,m,) Vn, 7). (7.30)

we obtain
W, — WOXn,7) = d, (V(1,7) — 5 €y
X [neUB(n,T) — nBUn, 1)K (n)
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=Jd, (MV(1,7) — 3 €,/ KY (M) [1°UB(n,7)
— nBU%(n,7)]
= Ja4x stx —7)d, ()
= 3 €05 KT (1) (2 xB — 1Bx )Ly ()
= — Jatx 50w — THIL, () — 3 €y [¥ KB ()
— xBK* (ML, &)
= — Jd% 5w — T)eEWE/h ] (e KDL, ()

= [ dax s — ) KOIRY, () (7 D,
.3

Upon applying this operator to an unstable particie
momentum eigenvector with vanishing kinematical
spin, we have

W p;m,7) = (20h)363(P — p), (ML 1, (n,7) D57, T(>7; 2
Since the hyperplane rotation generator d;(n) com-.
mutes with £, (x) whenx, = 7,7 and
h g
T OIp3 0,7 = €pap b g WYIB5TLT),  (1.39)
we have
ih }
W, \psm,7) = (20h)363(P — P)eﬁmt(npf)_ 5 fpagypagﬁg
X |pyn, 7Y, (1.34)
Assuming only one decay mode, i.e., into the states
[p1,b(+)), we can write this as
W, 1p;m,7)
= (2nh)3 [dp,dp, 6.(p3 — m3c2)6.(pg — m§c?)

\ ih
X 63(py + by — D)\ by, £y(+))

x <P1,P2(+)lc‘3mt(ﬂ“7)lp; oy
= (27h)3 [ d4pa%p, 5.(p3 — m3c?)

b}
€papyL” 3—1%
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x 8,(p3— m3c2)83(py + Py — P)
PSR ih g
X gilaptuhy mb)r/h-2~ €poc6ypa ﬁ;

X F(p]_p2)pp11pp2)ny X Ep1’p2(+)>' (7- 35)

Now in the discussion following (7. 21) we learned
that an isotropic angular distribution in the rest
frame of the decay products would occur if and only
if F depended on pp; and pp, through the sum pp, +
pb, and did not depend on bpy — pp,. But this is just
the condition that makes (7. 35) vanish. Thus

d
fp(xgy}t’a 8_15[3 nYF(Plﬂg,i)Pl,Pi’z)

oF oF 1
- G“aﬁyp“?}}’ (Plﬁ—a—ﬁp—l +p2ﬁ é}@) = ZGPaBYPQnY

o <(P1 + pgy)B oF N (py — Py)® aF )
2 d (ppl + ppz) 2 0 (ppl - PP;;) ’
(7. 36)

and the delta function 63(p, + p, — p) in (7. 35) elimi-

nates any contribution from the first term on the
right of {7.36). The final result is

W, 1p;n,7)
= (2nh)3 [ d4p,d4p,0.(p} — m3c2)8,(p§ — m3c?)
X 5n3(p1 + Py — p)ei(npfnpz-np)r/h
X 1R €00, DDy ~ D)BY)Y
AT (baby, b0y + by, b0y — Py)
oDy — pps)
X 1Py, 0p(+)),

(7.37)

and, if F depends only on pp; + pp,, the dynamical
spin vanishes.
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Probabilistic Interpretation of the Quantum Scattering Cross Section
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The probabilistic interpretation of the quantum scattering c¢ross section in the case of potential scattering is
discussed in terms of Poisson random measures on the impact parameter plane and the sphere of cutgoing

directions,

1. INTRODUCTION

In this paper we shall discuss the probabilistic inter-
pretation of the scattering cross section for a quantum
system described by a Hamiltonian H = — 32 3,
(8/8x3)2 + V acting on L2(R3).! This is the quantum

analog of the case we considered in an earlier paper.2

Almost all of the ingredients for a probabilistic des-
cription of a cross section in the quantum case al-
ready exist in the literature. The work of Hunziker,3
where the quantum analog of the impact parameter
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Now in the discussion following (7. 21) we learned
that an isotropic angular distribution in the rest
frame of the decay products would occur if and only
if F depended on pp; and pp, through the sum pp, +
pb, and did not depend on bpy — pp,. But this is just
the condition that makes (7. 35) vanish. Thus

d
fp(xgy}t’a 8_15[3 nYF(Plﬂg,i)Pl,Pi’z)

oF oF 1
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and the delta function 63(p, + p, — p) in (7. 35) elimi-

nates any contribution from the first term on the
right of {7.36). The final result is

W, 1p;n,7)
= (2nh)3 [ d4p,d4p,0.(p} — m3c2)8,(p§ — m3c?)
X 5n3(p1 + Py — p)ei(npfnpz-np)r/h
X 1R €00, DDy ~ D)BY)Y
AT (baby, b0y + by, b0y — Py)
oDy — pps)
X 1Py, 0p(+)),

(7.37)

and, if F depends only on pp; + pp,, the dynamical
spin vanishes.
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The probabilistic interpretation of the quantum scattering c¢ross section in the case of potential scattering is
discussed in terms of Poisson random measures on the impact parameter plane and the sphere of cutgoing

directions,

1. INTRODUCTION

In this paper we shall discuss the probabilistic inter-
pretation of the scattering cross section for a quantum
system described by a Hamiltonian H = — 32 3,
(8/8x3)2 + V acting on L2(R3).! This is the quantum

analog of the case we considered in an earlier paper.2

Almost all of the ingredients for a probabilistic des-
cription of a cross section in the quantum case al-
ready exist in the literature. The work of Hunziker,3
where the quantum analog of the impact parameter
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plane (among other things) has been defined, has been
especially important for us. In fact our contribution
is to make a slight refinement of Hunziker's treat-
ment by using a Poisson random measure on the im-
pact parameter plane to describe an infinite beam of
incoming particles and a Poisson random measure

on an appropriate subset of $2 to describe the direc-
tions of the scattered beam. [S2 = {(k,,k,,%,) € R3:
ky2 + ky2 + ka2 = 1}.] Most of the paper will be de-
voted to embedding Hunziker's treatment of the
quantum cross section into our setting. The only
thing which will need proving (and the proofs are very
easy) is that the limit of a finite beam yields an in-
finite beam in our sense and that the limit of the
cross section of the finite beam, as the beam becomes
infinite, equals the cross section of the infinite beam.

2. CROSS-SECTIONAL RANDOM MEASURES FOR
FINITE BEAMS

As we mentioned in the introduction, we will be con-
cerned with quantum scattering for a system des-
cribed by a Hamiltonian H = — 3 A + V(x) acting on
L2(R3). We will make several assumptions about H.
The first, of course,is that H is self-adjoint in some
sense,e.g., V is a Kato potential relative to H, =
—1A.4Let U(t) = exp(éHt). The second is that there
exists a unitary propagator Uy(f) : — 0 <t <,as-
sociated with (H,, H),5 such that

s-lim U(— §)Uy(¢) = Q* (2.1)
t—=>+00

exists with
range {Q*) = range (Q°); (2.2)

i.e.,we are assuming asymptotic completeness. Then
S = (2%)° 12" will be the scattering matrix for the
system (H,, H).

Remark 1: If V is a “short range” potential,
Uy(t) = exp(iHy?). In fact, we could take as the defini-
tion of “short range” the existence of (2.1) with pro-
perty (2. 2) when Uy(¢) = exp(iH yi).

Let ¢ be a vector state with nonzero mean momentum,
ie.,¢ € L%R3), lgl = 1,and ((¢,p,9),(0,p29),
(@,p39)) = p=0,where p; = (i)"1(3/3x9),j = 1,2,3.

An incoming @-beam of n particles with intensity

v, denoted by T,",v.q,,is a set of n independent identi-
cally distributed random variables {X,, ..., X,} with
values in the impact parameter plane

Iy ={x e R3 :x1p, + x3by + x3p, = x+p = O}

We further assume that each X, is uniformly distri-
buted over the square 4 ,in I; which is centered at 0

and with sides of length (n/v)1/2,

The physical interpretation of the incoming ¢ beam
is that it consists of » random incoming particles
whose states in the distant past are asymptotic to
{Uolexl, ..., Ug)l@Xa]t,where ¢2(x) = ¢(x + a),
aec II,.

The outgoing beam will be the collection of random
states {S[¢%),...,S[@*]}. The physical interpreta-
tion of the oulgoing beam is that the outgoing states
are asymptotically in the future like {U,())S[¢%1), . ..,
Up(BS[o*a 1}
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In order to define cross-sectional random measure
and the cross section of the beam, we must restrict
our incoming states to those with a “reasonably sharp”
momentum. We now make this more precise. Let ¢
be as above and let

Cle) ={ap:2> 0,p € supp($)}

be the cone generated by the support of the Fourier
transform ¢ of ¢. C(g) will be called the cone of
forward momentafor T, , o+ We vequive from now
on that C(p) = R3. Y

We can now describe the cross sectional random
measure for the beam 7, , . First of all,it will be

a random measure on S2(¢) = S2 N [C(y)]’, where [ ]’
denotes the complement of []. §2(¢) is the set of non-
Jorward divections for T, , .. If T is a Borel subset
of S%(¢),let N, , ¢(E) be the (random) number of parti-
cles in the outgoing beam which asymptotically have
their momentum directions in 2. It is clear that this
is a binomial random variable with parameter = (the
maximum number of particles in the beam with out~
going directions in Z) and with probability that the

jth particle in the beam has outgoing momentum di-
rection in T equal to

sy SL0®)®) 12pda.  (2.3)

The random measure on S2(¢) defined by

(/v

nY,¢

P,,,=(aread, )1[
n

N

@n.u,ga(z) = Nn,u,¢
is the cross-sectional random measure for the beam
7, .., The measure on S2(¢p) defined by

0,,(¢,2) = E@,, (2),

where E(*) denotes the expectation of (*),1is the cross
section of the beam T, , ,. From (2.3) and the fact
that N (£) is binomial, it follows that

nv,.¢

0,(@,2) = [ [0 IS[0%)0) | 2dpda,

n.v

(2.4)

where C(2) = {ix : x> 0,x € Z}. Thus the cross
section evaluated at ¥ is the expected number of
particles in the beam which asymptotically have out-
going momenta in T divided by the intensity. We shall
see in the case of an infinite beam that the cross
section is independent of the intensity of the incoming
beam.

Remark 2: 1f we let R =S — 1,then
o ,2) = IR[@e](p) | 2dpda,
03 = f, [y RIo°]

since supp(p) N C(Z) = {0}.

(2.5)

3. THE CROSS-SECTIONAL RANDOM MEASURE
AND CROSS SECTION OF AN INFINITE BEAM

Infinite beams are somewhat more subtle to handle
than finite beams. Intuitively an infinite ¢ beam
should be given by an infinite collection of indepen-
dent uniformly distributed random variables {X;,

X ,} with values in IE . We would then reason

essentially as we did in Sec.2, The difficulty is that
there is no such thing as a uniformly distributed
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random variable with values in 7;. Thus we must find
an alternate way to describe an infinite beam. Fortu-
nately a mathematical object exists which will allow
us to do so. It is the notion of a Poisson process (or,
if one prefers, random measure) based on a measure
space which in our case will be either I with Lebes-
gue measure or S2 with the canonical measure. See
our earlier paper and references given there.2

We shall now give the definition of an infinite beam.
@ is assumed to satisfy the same conditions as in
Sec.2. An infinite ¢ beam with intensity v(> 0) is a
Poisson process TM, on the impact parameter plane
L with measure vda where da is Lebesgue measure
on I;. The physical interpretationof 7, , is as fol-
lows. Let w be a generic sample point and let
{X; @), -} = supp(7, (). [Recall that T, ,(w) is a
nonnegative integer-valued measure on /;. We may
also assume the support is at most countable and
Ty,(;(w){Xj(w)} =1forj =1, --.] The incoming beam
will consist of particles which in the distant past are
asymptotic to
{Uo(t) (le(w): ey Uo(t)(PX"(u)v <oyt o — OO}-
Remark 3: Finite ¢ beams may be treated in the

same way as infinite ¢ beams. In fact,if A is a Borel
subset of 11—,, let

7w (A) = the number of {Xl(w), e 40

R,
which lie in A,

where {X,,..., X} =T,  (seeSec.2). T,,  willbe
a nonnegative integer-valued random measure on Iz,

supported by A, ,. It is clear we can recover Tn.v.tp

from 7, .

the limit of finite ¢ beams is an infinite ¢ beam.
Proposition 1: {T

n.v,¢

to Tu,¢(‘4) for each Borel subset 4 of /5.

The following proposition will show that

(A)} converges in distribution

Proof: T, , [(A)is a Bernoulli random variable
with parameters # and p, , , = [Area @, )
da. Then,from the well-known convergence

theorem of Bernoulli random variables to Poisson

variables,8 our proposition is proved.

The cross-sectional random measure of the beam

7, . is defined to be Poisson process @, , on S2(¢)
wft% measure
S
olp,2) = f! fc(z) |R[@2](p) | 2dpda. (3.1

P
[We allow o(¢, 2) to be infinite.] The measure o(gp, *)
is called the cross section of the beam 7, ,. Note that
it is independent of the intensity.

The physical interpretation of , , is analogous to
the finite beam case. In particular,when Z is a Borel
subset of S 2(¢), P, (Z) =N, , (Z)/v, where NU'W(Z.) is
the number {a random variable!) of particles in the
incoming ¢ beam whose momenta have directions in
% in the distant future. o(p, Z) is the expected num-
ber of such particles divided by the intensity v.

The definitions of &, , , and g, (¢, ), the proposition
above, and the following proposition justify this physi-
cal interpretation.
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Proposition 2: The sequence {8,  (Z)} converges
in distribution to &, (Z) for each Borel subset T of

S2(¢p). Furthermore',(p

lim 0,,(¢.2) = o(e,Z). (3.2
Proof: It suffices to prove (3. 2) by the theorem on
convergence of Bernoulli random variables to a Pois-
son random variable.6 But (3. 2) follows from (3.1),
(2.5),and the monotone convergence theorem,

4. CONCLUDING REMARKS

Remark 4: In this paper we have only stressed
the mathematical description and physical interpreta-
tion of certain scattering experimental parameters
for a simple but important class of quantum mechani-
cal systems. We would like to briefly describe how
the hard analytic problems of scattering theory are
related to our present discussion.

The first analytic problem has already been discus-
sed,namely, the choice of an appropriate “free” pro-
pagator {U,(#)} and proof of (2.1) and (2.2). For ex-
ample, see Amrein ef al.,5 Dollard,5 and Hunziker3
and references given there,

The other main analytic problem is to obtain a more
tractable expression for the cross section (2.5). This
has been described in a very lucid way by Hunziker.3
We reproduce the main results of his discussion.

He shows that under reasonable conditions on V and
¢, one has
ole,2) = m2 [ dp [, .1 T(,0)1215() 12425,
(4.1)
where d€2;(p’) is the canonical measure on the sphere
p'? = p? and where T(p,p’) is obtained roughly as
follows. One solves the Lippman-Schwinger equations
T(z) =V + V(H, — 2)1T(z) (4.2)

in momentum space for Imz > 0. Let T(p,p’;z) be
the kernel for T(z). Then

T(p,p") = ligp, T(p,p';p2 + 2ic).

It should be remarked that the study of (4.2) is also
important for establishing (2. 2).

Remark 5: The differential cross section enters
the picture in the following way.? Let {¢,} be a sequ-
ence of states such that lg |2 converge to 6(- — p).
This corresponds to the incoming beam having a
sharp momentum p which of course cannot be reali-
zed as a physical state. (Intuitively,in fact, ¢(x) =
[6(0)-/2 exp(ip-x))]. Then,under suitable conditions,
(4.1) converges to

o(F,2) =(2m2 [ | T((p,p)]2 - [2E(p)]/2aR(p),

where E(p) = 302,p = (Ip] ,6(p), ¢(p)) in spherical
coordinates and dQ (p) = sin 6(p)d6(p)de(p). The
measure o(p,*) on S2—{p/p|} is called the'cross
section of the idealized incoming beam with sharp
momentum p. The density of this measure with re-
gard to dQ ;
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do 3 _ L/ 7
n (P,8,9)=[2E(P)]12|T (p,p)| 2,

is the differential cross section of this idealized
beam.

This work was supported by NSF Grant GP-18127,

We have set # and m equal to 1 for simplicity.

D. G.Babbitt, J. Math. Phys. 12, 53 (1971).

The lecture notes of W. Hunziker in Leclures in Theorelical
Physics, edited by A.O.Barut and W. E, Brittin (Gordon and
Breach, New York, 1968}, Vol . XA,

4 E.Nelson,J.Math.Phys. 5,332 (1964), see Appendix.

WO e ®

5 W.O.Amrein, Ph. A, Martin,and B. Misra,“On the Asymptotic
Condition of Scattering Theory,” preprint from Institute de Phy-
sique Théorique, Genéve (1969);J.D. Dollard, Rocky Mountain J.
Math. 1, 5 (1971).

8 W.Feller, An Infroduclion lo Probability Theory and Iis Applica-
tion {Wiley, New York, 1965), 2nd ed.,p. 142,

7 We again follow Hunziker's treatment.
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In this paper, the multipole radiation solutions are derived for the integer and half-integer spin massive par-
ticle wave equations of Weaver, Hammer, and Good. The rest system and massless limits of the solutions are

Is)und, the latter limit being shown to coincide with previous work by the present authors. Finally, as an applica-~
tion, the massive particle description is second quantized in terms of the multipole solutions and compared with

some other formulations.

1. INTRODUCTION

It has been shown? that, for massless particles with
integer or half-integer spin S, one may construct a
Schridinger type wave equation and solve this equa~
tion for the muitipole radiation solutions, all in com-
plete parallel to a treatment of the photon and Max-
well's equations. The purpose of this paper is to ex-
tend the construction of multipole solutions for any
spin to include also particles with mass m, o examine
the rest system and massless limits of the massive
theory, and to secondquantize the massive theory in
terms of angular momentum eigenstates.

The basic description to be used for massive partic-
les should have a well-defined Hamiltonian operator,
and a wavefunction that has simple Lorentz trans-
formation properties and is not subject to auxiliary
conditions. Such a description exists and has been in-
vestigated in detail by Weaver, Hammer, and Good.?2
Following Ref. 2, the wavefunction y, representing a
particle of mass m and spin s, is 2(2s + 1)-~dimen-~
sional and satisfies the wave equation

Hy(x, t) = z'g; Vix, 1) (1)

(the units are ## = ¢ = 1), The Hamiltonian operator
H is given by

H = E,SBS1, @
where S is derived in Ref.2 to have the form
23 »
S=2dn ("’ P)“ﬁn. (3)
n=0 l Pl

The coefficients d, depend only on | P| the magnitude
of the momentum operator P(= — iV). The explicit
forms of S and S-1 are tabulated in Ref. 2 for spins
0,%,1,and £, and general formulas from which one
may derive the coefficients d, for arbitrary spin are
given in Ref. 3, Also, one has the definitions
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Eosmﬁ;(g 35), Bg(g é),
4

where 7 and 8 are the {(2s + 1)-dimensional unit and
Hermitian spin matrices, respectively.

As shown in Ref. 2, Eq. (1) is completely equivalent to
E,S$, 88571y = z‘aitw, (5)
where the operator §, is
§t = exp[se€, tanh-1(|P| /E Ja (/| P|)]. (6)

The operator

-, d / } 2|
€y T 1 71—
YA
is the sign of the energy operator, It differentiates
between particle and antiparticle states,

Equations (1) and (2) imply that y satisfies the Klein—
Gordon equation for mass m, and with respect to the
homogeneous Lorentz group, ¢ transforms as the
direct sum of the (s, 0) and (0, s) representations.

The outline of this paper is as follows: In Sec.II the
multipole solutions of Eq. (1) are derived and discus-
sed. The rest system and massless limits are then
presented in Secs.III and IV Wwith the latter limit being
shown to coincide with previous work.? Finally, the
massive description is secondquantized in terms of
angular momentum states and compared with some
other formulations in Sec.V.

O. MULTIPOLE SOLUTIONS

Making the substitution ¥(x, f) = W(x)e £t in Eq. (1),
one obtains the eigenvalue problem

HW(x) = EW&). (7
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Defining

-8 O
z=(3 9) (®)

one has the commuting set of Hermitian operators
H,J2,J5, 2, and X where

J; = ei}.kxj(_i._a_) +3%, A=zP/IPl. (9
ox,
(Laatin indices run from 1 to 3 and repeated indices

are summed over.) The operator A is the helicity
operator with eigenvalues n=—s,— s+ 1,...,s.

The problem is, therefore, to find physical solutions
such that

JW=MW,—J <M =<J, (12)
L2W = s(s + D)W, (13)
AW =W, —s=7ns=s. (14)

The simultaneous eigenfunctions of J2,J 4, and £2
are the spinor spherical harmonics ¥, _ defined in
Ref. 1, and the most general form for W(x) is

0= 5 ol O Nenilly ]

(15)
{7, 8,and ¢ are the spherical polar coordinates of x),
with the 2(2J + 1) [or 2(2s + 1) if J < s] radial func-

tions (with the other indices suppressed) to be deter-
mined,

HW = EW, (10)
Defining € = E/| E|, one can show that Eqs. (10) and
J2W=J{J + )W, (11)  (14) lead to the following equation for W:
JEZ _m2
exp {—— 2en tanh‘1(~——-——~—~———E lElm )] 0
- 3 2\ WX 16
<AWte) ; coften e (F=7)] 1o

Substituting Eq. (15) into Eq. (16) one obtains
h(r) = €62(E,mk(r), |J —sl =i=d+s (17)

where
8(E,n) = exp [en tanh-l(@)]
| E|

_ (!El + VEZ —m?\ 2

18
|E| —VE2 —m?2 19

The helicity eigenvalue equationleads to the following
equations for the k;:

J+s5 J+s
s-P( z kz‘lfzb,ll,s) = nJEz—mz( Z lkz%’ti,s)- (19)
i=lJ-s i1=ld-s

This set of equations for the & has the same form as
J

the eigenvalue problem for the massless Hamiltonian
which was solved in Ref. 1. The radial functions &,
are, therefore, given by

kl(’}‘) = [Cz(ﬂ)/Pl/Z]Huuz(P),

where p = VE2 —m2 7 and H,,, ,, are Bessel or Han-
kel functions. The coefficients C,(n) are determined
by the following set of homogeneous equations:
2 af € () = NC gy (n),
- %ia§+ss~1 CJ+s—1(n) = nC.Hs(n)’

— 3igf$ Cy(m) + 3iad s Cpy(n) = nCyn),

lJ —sl+1=1=d +s—1, (20)

where the coefficients afs are defined, as in Ref. 1,
to be

as E((14r s+d +2)0+s—J+Ni—s+J+ DI+ s—l))l/z' (21)

(21 + 1)(21 + 3)

Equations (20) are similar to the set of equations
found in Ref. 1 for the massless particle case with
the important difference that now the eigenvalue 7
ranges from — s to s rather than being restricted to
the maximum and minimum values as in the mass-
less theory. Thus, in the massive theory, the eigen~
values of total angular momentum J are permitted to
have values less than s.

Equations (20) can be put in the matrix form
A; L£(n) = nC(n), (22)

where A; ;isa (2s + 1) X (2s + D[(2J + 1) X
(2d + 1)1 Hermitian matrix for J = s(J < s), and C(n)
is the column vector

CJ+s(T’)

cm=| . | (23)
Cpye(m

The eigenvalues of A, ; are foundto be — 5,— s + 1,
vesySford = s,and—dJ,—dJ +1,...,J for J < s so
for J < s not all the 2s + 1 helicity states are pos-
sible. However, since the eigenvalues of A, ; are pos-
sible eigenvalues of ), the solutions of Eq.(22) exist.
Furthermore, because of the Hermiticity of A, , the
coefficients C,(n) can be chosen to satisfy the follow-
ing orthogonality and completeness relations
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J+s *
2 Crmcm =6, fn)C,, MCm) = 6, (24)

t=tg-si

(where * indicates complex conjugation). Also, since
A% = — A, the Cy(n) can be chosen to satisfy

CAm) = C (= ). (25)

Finally, the complete solution to the eigenvalue prob-
lem is

J+s

W am (X) = msl 2 Cymp 1/2H,, 15(p)

=J-sl
o(E,me¥y; (6, ¢)
[5-1<E, mei, (o, <o>] (26)

(the factor m*is included to facilitate the massless
limit). For solutions W, ; uX) regular at the origin
p = 0, one uses Bessel functions for H,,/,. To obtain
outgoing spherical waves one uses, as in the massless
case, Hankel functions of the first (second) kind, 4

H(L (H(2)), when E > 0 (E > 0).

In the case of outgoing spherical waves, the complete
solution is

\I’i(J’M’ s, 1, ,E l; X, t)
J+s

=me 2 CUo AN (o)

[ﬁ(i VEY, mev, o(o, #’)] e IEI

o1+ El, n)¥¥, 19, ¢) 31)

The upper (lower) signsare for positive (negative) E
solutions and the first (second) kind of Hankel function
is to be used with them.

Using Eq. (27) one may now construct the definite
parity multipole solutions. From Ref. 2 the parity
operator Il is defined by

It = igP, (28)

where Pf(x) = f(— x). Thus, for half-integer spin s
the parity eigenstates are

Vkeg UM, 5,1, | EL;x, 1)
lpelec (JfM: s, 7, ‘El;x: t)

= (1 + (- )12y, M, s n, |E; x, 1),
the motivation being that

Hll’mag = (* I)J_l/zwmag’

Y gee= (= 1)J)'l/zl‘belec'

For integer s one defines

(30)

Voag (0, M, 5,1, | EI;%, 1)

=[1—i(— 1)My(J, M, s,n, | El;x, ¢),
Yerec M, 5,0, | El;x, 1)

= (1 +i(— DMy, M, s,m, | El;x, ).

(1)

In this case the appropriate parity operator is P =
-~ ¢II and one finds
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- inwmag = (_ I)meag!
— MY gee = (— 1)J"’l‘l/elec‘

IOi. THE REST SYSTEM

Let v, the magnitude of the particle velocity be de-
fined by v = VE2 —m2/|E|. The rest system is de-
fined by v = 0. To first order in v one has

(32)

8E,n =1+¢em,

(33)
EZ —m2 = muv
and therefore, for small v,
Wi 5 an®)
L8 € ‘pyl s
= msS 2 Cl(n)<mUT)‘1/2H1+1/2(mvlr) .
121a-s! Y
J+s
+enums 2, C,(m)mur)L2H, , o(mor)  (34)
1=1J=sl .

y [e \Ifﬁl'sjl .
- \I'J,l,s
In order to obtain a meaningful limit in Eg.(34) as

v — 0, one must use Bessel functions? J,_ ,,, (movr) for
H,,1/5+ Then, since

0, >0
v2/m, 1=0,

one sees that limW;, ; ,(X) = 0as v— Oforall J # s,

]5‘1_{% (x)-l/leq/z(x) = (35)

since for all such J the corresponding ! is greater
than zero. For J = s,the limit is nonvanishing since
1 = 0 occurs and one, then, has

< Co(n) [G
V27

where [s, M) are the (2s + 1)-dimensional eigen-
vectors of the operators s? and s;. Thus, limWy; ;4
as v — 0 are the eigenvectors of Z; and mf belonging
to the eigenvalues M and em,respectively, where T,
is the component of spin along the z direction and

m (3 is the rest system Hamiltonian.

(36)

IS,M>]

UmWg, ;4 ®) =m ls )

v~>0

IV. THE MASSLESS PARTICLE
Consider the behavior of W3, ; ,(x) as m — 0. One
gets

Jts

l%{ﬂ C/Mp 12H, 4 4(p)

i M
. [%_r%msé(E, n)eq:J.szJ -

tog 073 8, m,

g%%fn,J,M (x) =

where | |
. E| + |P|\:en/2 _ venVirm a(s7En)
um(F Ry " - elED e @

Since it is always true that €7 = s, it follows that for
Inl = s, limm(s*en) = 0 as m — 0. Thus, for J < s,
LmWg 4 (X) = 0asm — 0, since in this case | n| =
J < s, while, for J = s,

Um W, 5 m (x)

=0, ~|T)|¢S»
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J+Ss -
M
= (2|El)s 25 Cl(es)p‘1/2Hl+1/2(p)[€ J,l,s]’
L=lg-sl 0
= €S J+s 0 (39)
- @IEDs T c- es)p—l/zHM/z(p)[ 0 ]
1=l J-sl ¥is
n=— €8s,

The second of Eqs. (39) is, except for normalization,
in complete agreement with the massless solution
found in Ref. 1.

V. SECOND QUANTIZATION

For the purposes of second quantization, it is con-

WES.n.J.M (x)
exp [e tanh-1 <I—P—|> S'P} 0
0 exp [— € tanh™1
Then one defines a set of functions vf/,g,n_JM (x) by
1 P |> a*Pi .
W X) = m* exp |€s tanh™1 (——— — | W§ X),
E,r],J,M() p[ lEl lpl} E,n,J,M()
(42
so that
- I € ¥
WES,,,,J,M x) = z %} Icz(n)P-l/le+1/2(p) \IIM .
=lJd =8
J,l,s (43)
The reason for this decomposition is that W satisfies
EoBWg , sm x) = EWZ, ;u X, (44)
AW pam ) = W3 50 (%) (45)

and, therefore, may be identified as the partial wave
decomposition of the Foldy wavefunction.> Note that
apart from an over-all constant W is identical to the
first term in Eq.(34) and so is related to the rest
system of the particle.

= Eﬁ/s

One may rewrite Eq. (44) as BVVESHJM SR

Using this form, Eq. (42) may be written

Wi au (X) = msS(PYWg, 1y (X), (46)
where S(P) is given by
S(P) = cosh(yx) — y,B sinh(y}), (47

S-1(P) = sech(2y))S *(P)
with

y = tanh"1(| P|/E,)
and

(here findicates the Hermitian conjugate).

The operator S(P) and its properties for any spin
have been discussed in detail by Williams, Draayer,
and Weber.3

The most general state function that can be con-
structed from the set Ws;, ,,, (%) is given by

643

venient to rewrite the basic solutions, Eq. (26), as fol-
lows:

o(E, m) 0
Ws (x) = ms[ :I
are 0 5UE )
J+s / € \I"% s
x 25 Cmp~12d;,415(p) W | (40)
l=lJ~sl ‘I’J,z,s

where the (2s + 1)-dimensional unit matrix is sup-
pressed in 6 and 61, In terms of the (2s + 1)-dimen-
sional spin matrices, Eq.(40) may be written

lE| | P] o
I
wx, = [ ;dEM%}nﬁ At (EYWSs gay (R)eTi€E
= mS(P)o(x, 1), (48)

where
o, )= [dE 2 Agy, (EYWey, gu(®)eicEt (49)
J M,y €

is the Foldy time-dependent wavefunction satisfying

EoBo(x, 1) = i :_tq>(x, ). (50)
The A;y, . (E) are expansion coefficients and will be
replacedrﬁ)y operators in the second-quantized theory.

To quantize a field theory there are two possible
approaches. One can construct a Lagrangian density,
define from it generalized momenta, and impose the
usual equal time commutation relations. To intro-
duce the particle concept, one then expands the field
operator on a complete set of functions, projects out
the expansion coefficients (which are now operators),
and derives their commutation relations. The second
approach is to postulate the commutation relations of
the expansion coefficients and to derive the relations
among components of the field operators. The second
method will be followed in this work.

Using Eq. (48) to make the connection betweeny and
&, the Foldy wavefunction @ will be quantized first.
Thus, one rewrites Eq.(49) in operator form as fol-
lows:

3(x,t)= [ ;jdEr(E)J%j (G BV, 53 (R)ETiEE
S|

+ O3 u, (EYWS,, 0 (®)eiBf]  (51)
where
T(E) = VE/2(E2 — m2)1/4
and
a0 (E)/ By (E)

are the annihilation/creation operators for a particle/
antiparticle with quantum numbers E J, M, . The
operators satisfy the commutation/anticommutation
relations for bosons/fermions with integral/half-
integral spin
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[av a]* = [b’b]¥ = [a!b]* = [a’ bf]* =0 (52)
and '
[a‘,'M.,,(E), a},_M,'n, (E')]* = ﬁJJ, GMM,GM, 6(E— E"),

[O.J,M.n(E)’ byt (BN = O Outa s O e S(E—E), (53)

where —/+ means the commutator/anticommutator.
From the above relations it follows that

[8,(x, 1), B4(x’, )], = 0,
[2,(x, 1), &f (x', )],

= f:dE FZ(E).]'%) RWES.H,JM (x))a(ﬁ’Eﬁn,J,M(x))g e-iB(t-tr)
]

F (W00 RN (W5 s (KN €45C -], (54)

where a, 8 range over the 2(2s + 1) components of
$n.om+ At equal times one, therefore, must evaluate
the integral

[rdET? (E)J% Wean RIWE, 0 (x)

*
= [farem) © 3, S0 L@
adtin 10" Jrrt NBE —m?

X d).q o(TVE2 — m2)Jl,+1/2('r'w/E2 —m?2)
M MY 7 / 1 1
X \I’J.l,s(e’ ‘p)\I‘J.l.s (9 ' @ ) ® 1 1/ (55)

where ® denotes the direct product. The complete-
ness relation for the C,(n), Eq.(24), enables one to
perform the sum on 71 and then,on I’. The Bessel
functions also form a complete set, the appropriate
closure equation being

S dx X Jy oW,y o (ar?) = 1/78(r — 77, (56)

Using this relation and the completeness of the
spinor spherical harmonics one finds

[> dEFZ(E)JMz;n W am WL 1 (X7)
%
=tew-xf, 7' 6V

Then, for the two types of statistics the equal time
relations among the components of the Foldy field
operator are

[®, &, 1), 2} (x', )], = 8,50(x —X'), (58)

[®,(x, 1), 2§ (x’, )] = B,30(x—x). (59)
From Eq.(58), — i®'(x, ¢) is the operator canonically
conjugate to &(x, ¢) in the case of Fermi statistics,
and for Bose statistics — i®'8 is canonically conjugate

to @. These results agree with those found by one of
us (D.L.W.) using an expansion of & into plane waves.

Using Eq. (48), the relations for the wavefunction
operator yare [a and g range from 1 to 2(2s + 1)]

[‘l/q (x9 t), we(x” t)]: = 0 (60)
and, for Fermi statistics
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m-25[Y(x, 1), Y (&', 1)), = (S(P)ST(P))ys 6(x — X*), (61)

which reduces, for spin 1/2,to

[‘Pa(x’ t)) lpg (x', t)]+ = Eoéaa 6(x - x,); (62)

the usual result for the second-quantized Dirac
theory when one takes account of the normalization.

Similarly, for Bose statistics

m-2s[y (x, ), ¥ (x', 1))
= [H(P)/Ey S(P)S*(P)],z0(x — x').  (63)

These results are in agreement with the equal time
commutators and anticommutators found by Nelson
and Good® who quantized the plane wave expansion
coefficients of Y(x, f). It should be noted that for Bose
statistics one should use [(H(P)/E ) (x, {)]" rather
than ¢ for the operator canonically conjugate to ¥ or
make some other adjustment (as discussed in Ref. 6)
to obtain a casual commutator.

APPENDIX: PROPERTIES OF THE MATRIX A
AND THE COEFFICIENTS C,(n) !

Since A = A, ; one need only consider A, for
J = s, Defining

=1_Js
Gy = 2075

1=v=2s, (A1)
the eigenvalues A of A, satisfy

det(A;, — M)

2s
— 22s+1 - -
= a2s+ —)\2$1Za,2+)\233 )

a2a2
r=1 " Sn-2 'larz

— A2s-5 ),

= -
"% g
‘rl— ‘rs_

a§1a§2a§3 + 000 =0, (A2)

The roots are foundtober = 5,s—1,...,— s.

Now for J < s one sees because of Eq. (A1) that the
eigenvalues of A; jare A =J,J —1,...,—J. This

implies that for the massless particle, in which only
the extreme values % s of helicity are allowed, states
with total angular momentum J < s do not exist. This
is confirmed by the fact that the massless limit of
massive particle states with J < s is zero.

In order to derive the general formula for the co-
efficients C lgn), consider a sequence of nonzero, real
numbers {ak , and correspondingly, a class of Hermi-
tian matrices A, defined by

0 —ia, 0 . .-
ta; 0 —ia, 0 <

A= . (A3)
. cvvia,y 0 —iq,
. 0 ia, 0

Let A,()) denote det(A, — M). Then, the numbers
A,(\) satisfy
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AN + @A) = XA (M) (A4)

If one defines A_; () = 1 and A,(2) = A, then Eq. (A4)
is satisfied for k = 1,2,--+. Define now the
numbers X,(x) by

Ak(x) = (_ Z) k+1a1a2, LR amlxk()‘)’ (A5)
where a; = 1. Then X «2) satisfy
—ia XA Fia, X, o(N) =AX,  (A), k=12,
K10k 2 Xp-2 1 ’ (A6)

CJ*s(n) =1, CJ+s—1(n) = Zin/a.ﬁss—l’

” %iaj,'-&ss—l n
cJ+s-r(7’) = (Zi)y/ (krll aj'fs-k) det

The values of the coefficients C,(n) are listed below
for some special cases. The normalization is that of
Egs.(24):

Spin 3 (Dirvac particle):
CJ+1/2(n) = - 1‘/517,

Crapm= 1/42.

Spin 1 (Vector boson): For J = s,using the notation
of Eq. (23),

~ - ~ |
PNAY J +1

2J +1 2J +1

1
om = — 1 , = o |
i J +1 J
2J +1 J 2J +1
L L -J
Cl— 1) = CX);

for J < s,i.e.,d = 0,C(0) = 1.

Spin 3/2: For J

I\
0
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If X is such that A, (A) = 0, then the column vector
X(2) defined by
X4 (N)
Xo(A)
XM= ‘AT)
Xn-l (A)

is an eigenvector of the matrix A, belonging to the
eigenvalue A,

From the above discussion it follows that the co-
efficients C,(n),d — s=1=4J + sare given to within
a multiplicative constant by

L. ds o
7 ztags 4 0

—_— %ia§55_2 s
: . (A8B)

.

=
[
Wi
~,
Q
sy
[}

1.
20051 T

F—l =
oW+ 1

2i
" 3J
3J — 4J + 12

32T —1)2J 73)

& (J (2d —J1)+(23 + 3)>1/2<3J - 45;1 - 1)"2)
L

where n = 3, 3,— z,— 3, and N, is the normalization
constant, Explicitly,
7
[ pr o1 33T +3)
J +1 J +1
; BRI =D , I3
3 1 d 1 J
Bt Ve B
2/ 41 . j2J +3) 2 J—1
J +1 J +1
RS . eI D
J J
L

- —

C(=3) = C*(3), C(—3) = C(3);

M -

for J < s,i.e.,d =%,

C('ﬂ)=—1—-[—2in], n=z

o=
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The conventional WKB method for phase shift calculations is known to fail for singular repulsive potentials at
small incident energies. We show in this paper that the modified WKB method due to Miller and Good can be
used instead and that it gives better agreement with the exact results of the scattering phase shifts at small
incident energies and in the small coupling constant limit, as more terms in %2 are included.

1. INTRODUCTION

An excellent account of various approximation
methods on singular potentials was recently pub-
lished in a review article by Frank, Land, and
Spector.! We see that the conventional WKB method
for phase-shift calculations fails badly at low ener-
gies, while it gives very accurate results at high
energies. In this paper we show that if use is made
of the modified WKB method as given by Miller and
Good? and later extended to include higher order
terms in ﬁ2,3’4 we can obtain a very interesting
result, namely that the modified WKB method can
be shown to be valid in regions where the conven-
tional WKB method fails.

In Ref. 2 it is indicated that the conventional WKB
method is a special case of the modified method.

We will mention this in the beginning of the next sec-
tion. We feel, therefore, sure that this modified
method also applies wherever the conventional
method is valid.

In what follows we choose to illustrate the problem
by a repulsive -¢ potential and comparisons are
made with the exact results5 at the small energy

and small coupling constant limit in order to verify
the accuracy of the modified WKB approximation in
the regions where the ordinary WKB approximation
fails. We are not necessarily confining ourselves
with such a potential, nor do we intend to produce
better results than the existing ones as discussed

in Ref.1. The reason why we choose the » ¢ potential
is mainly due to the availability of the exact results
to compare with. Here the modification on the WKB
method is our main concern. If we want to obtain
better results, we will have to go to higher order
expansion terms than %2, This is not attempted here.
Even to the order 722, we believe that the correspond-
ing wavefunction which will be in closed form is

more useful than some of the methods given in Ref. 1.

However, we are not discussing any of these prob-
lems here. What we want to do here is to demon-
strate the method and use the known exact »~4 poten-
tial scattering results as a guidance. We will see
that the phase shifts of the modified WKB method
are improved if the next high order terms in 72 are
included.

In this investigation, we have focused our attention

eigenvalue of angular momentum [I(I + 1)]/27, as
the zeroth order in /7, for we think that it has a physi-
cal magnitude as energy or distance. Furthermore,
we let E = ;72K? keeping in our mind that energy

is of zeroth order in 7.

2. FORMULATION OF THE PROBLEM

The Schrodinger equation that we are going to solve
is of the form

2
ﬂ-{» <P%(T)> Yy =0,

dr? 2
where in our case, p%(r) = 2E —[I( + 1)/r2]p2 —
2(g2/7%). Here we are only considering the repulsive
potential, so that g2 > 0. The Schrodinger equation
that is used to approximate Eq. (1) is

d2¢  p3

— + =2 =0 2

5z e ¢ (2)
with p3(S) = 2E — [I( + 1)/S2]%2. Here we remember
that if p%(S) = 1, we reduce to the conventional WKB
method.? The reason why we are only able to consi-
der the repulsive potential is due to the limitation of
the method employed. In the case of p% = 0, there will
be one turning point Sq = [I({ + 1)]¥/2/K and in the
corresponding case p? = 0, there will be one turning
point ¥, also. This relation of one-to-one correspon-
dence is important. As derived before3 we have

3 12 o
<———p1 ——1‘;1>d1f
b3 P3
s %2 352 2py
- S+ — ~2as, 3

where as discussed previously, the contour integrals
are each evaluated around the turning point §; or
71 to the left and with infinity to the right.

1)

72

r
f”l pydr + 5

If we successively use the integration by parts,

0+ige 00 +{¢

o0 +ie
f - udv = uv —
0 -je

(4)

. vdu,
o-ie ©-ie
we can get rid of the appearances of divergence in
Eq. (3) which then yields the following formula:

to the repulsive potential because it has one turning s B2 e 02 I
point. We choose our solved part with a single turn- fr Pqadr + — (L 1 g — fr 1 dr)

ing point also. This will appear again in the appro- 1 24 1t}/2t1'2 1 ti/zt'l

priate place. We are concentrating our efforts to

the L = 0 cases. This is because the modified WKB s 72 fs 152 S fs Ly S 5
method used is more accurate as L becomes large. fS‘PzdS * 52 Us, g s, tyzt’zd (5)

Furthermore, the L = 0 case can be solved by other
methods, like the variation method etc., where the
solution will give a better approximation.

For reason of simplicity, we setm = c = 1. As we
have been doing previously we will consider the
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with the following definitions for ; = p%, ¢, = p3
and the upper limit » and S which will eventually be
set to be infinity later. Remember in Eq. (5) written
above, we do not have any divergence in the second
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order terms any more. Then we have, the phase shift
formula,

6,= 65+ Lm K(S —7), (6)

where 6= 0 because the right-hand side of Eq. (3)
is chosen to be that of a three-dimensional free
particle.

3. CALCULATIONS TO THE ZEROTH ORDER
OF 72

The formula that will give us the phase shifts needed
to 7° is, simply the zeroth order of #%2 in (5) which
yields
7 S
Sy, brdr = fsl b4dS. (7)

There is no difficulty in evaluating the right-hand
side of Eq. (7) so that

fss p,(S)dS= fssﬁ‘fg_s[ﬁszsz — I + 1)r2]V/2
= nk{S — [10 + VY27 /(2K)}, (8)

while the left-hand side is
")y = [ E 2K — 10 + 1) n2p2 — 2g2]V/2
o prlr)ar = [, 22 PKE I 72 — 2g2]

= HK[r —2(r} + v3)V2E(3m,k)

+ 2 + v/ (4, k) 9)
with
r2=(1/2K2X( + 1) + {[I( + 1)]2 + 8g2K2 /n2}1/2),
r§ = (12K200 + 1) —{[1@ + 1)])? + 8g2K2 /m2}1/2),
k2 =73/rf + r3),

and F (37, k), E(3m,k) or F, E being the complete ellip-
tic integrals of the first and the second kind, res-
pectively.

4. CALCULATIONS TO THE FIRST ORDER OF /2

It becomes a little more complicated to describe the
higher order terms. Taking the first order of %2 in
(5) for the S-side yields

. f@i[s t52> P sl
513210124 fsl<(t%/zt/22 as f51<(t%/2t’2)>d55

= B{I@ + DY i + B{L/I0 + DV2}ET,  (10)

While, the 7 -side can be expressed as

ol ty2 AR |
f’l((tw:raz»d" f“(awti)dﬂ |

72
lim | —
r>e | 24 [
= —nF /[8K(r? + r3)1/2]
—1r3(F —J,)/[4k (0 — v3)r§ + v3)1/2]
+ 8g4(F + Jp — 2J,) /{3H3K[1(1 + 1)]2
X @+ 732§ —r3)?, (11)

with the following definitions:

v% = 8g2 /210 + 1)n2], (12a)

F
Iy = Jo ot

— (12b)
1 — a2sn2u

F du
= R — 1
Iz '{0 (1 — a2sn2y)2’ (12¢)
and
a2= (0% —r3)/(r?+73). (12d)

Here we use the rotation and formulas from the
handbook written by Byrd and Friedman.® The only
deviation from this handbook is that here we have
previously specified the symbol K as given by

K = (2mE)1/27, where energy is always in terms of
K. So we prefer to use F (37, %22) and E(37,k2) or just
F and E to denote the complete elliptic integrals of
the first and the second kind, respectively. In so
doing, we have

k2F Ta2A (¥, k)
Jy= - , (13)
k2 _ g2 2[(1 2(1 —a2) (a2 __k2)]1/2
492 — 9p2 4p2
Iy = 1 a2E+2ka 2k +akF
2(e2 — 1)(2% —a?) k2 —q?2

7(2a2k2 + 202 — ot — 3k2)a2A (Y, k) (14)
2[a2(1 —a2)(@? —k2))V/2 ’
and
2 \1/2
= gin-1 [ %" _ 2 1 — p2
Y = sin (az—k2> , k 1 — k4,
where A ({, k) is called Heuman's lambda function

and it is tabulated in Byrd and Friedman. As in our
case 0 < — a2 < o, we have

2

Ao, k') = = [E(km, (IF(y, k') + F(n, R)EW, k)

—F(zm,DF W, k)], (15)

where F(y, k') and E@, k') are elliptic integrals with
argument /. And they are no longer complete inte-
grals.

Equation (6) together with Eqgs. (8) and (9) give us the

phase shifts to the zeroth order of #2. With the addi-
tion of Eq. (10) to Eq.(8) and Eq. (11) to Eq. (9) we ob-
tain the phase shifts to the first order of %2, Here we

" see that these phase shifts are true for all energies.

5. PHASE SHIFT AT THE SMALL ¢ LIMIT

As a check on the formulas previously, we now con-
sider the results that are given by exact solution,
namely the Mathieus function. However, we see that
the solutions to the Mathieu equation are only given
in series form. Recently Coombs and Lin4 gave the
solution in the small energy and small coupling con-
stant limit. By defining ¢ = Kq(2)1/2 we have, from
their Eq. (3),

0

og= (17?[(1 —q)2 + n2q2<2 [+ 3)(20 + 1]

X P[(cos9)> 2+ .. -J, (16)

where we have changed from the attractive case to
the repulsive case by defining a correct ¢ as was
done above.

Comparing this with the following well-known equa-
tions

i"; 2+ 1
1=0 2K

(ei28! —1)P,(cosb), (17a)
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TABLE 1.

The exact phase shifts are & = K2g22r5,, phase shifts
to the zeroth order in #2 are 50 =

K?2g22r8,, and phase shifts to

the first order in %2 are &V = K2g22nS,.

1 8= Sg = S;=
; ! . s '(1 + 8 )
@+ 1)@ —1)@ + 3) 8¢ + 1)]3/2 2 B+ 1)

1 0.066667 0.044 194 0.058 005

2 0.009524 0.008 505 0.009 391

3 0.003175 0.003007 0.003 164

4 0.001443 0.001 388 0.001 441

5 0.000777 0.000 761 0.000 177

= |7(6)}2

we obtain, for I =1, the following expression for the
phase shifts in the small ¢ limit

(17b)

5, = 2nK2g2/[(21 + 1)(21 — 1)(21 + 3)], (18)

where we keep only terms in ¢2 by omitting the
higher powers. By comparison with the exact result
at its small energy limit, we can determine how good
the WKB approximation is by simply expanding the
WKB results to the small limit. So that, to the zeroth
in #2, we have,for ! = 1,

KZgZ .”
e+ 1))z 4"

which was obtained by keeping only terms to g2 =
2K 2g2 guch that

6= Klr —9) = (19)

F(4mk2) = dn(l + k2 + -..), (20)

E(3m,k2) = in(1 —4k2 + .. ), (21)
and
B2 =73/} + v3) = 2g2K2/H201 + 1)]2.  (22)

To the first order in %2, in addition to the same ex-
pansion formula as given in Egs. (20), (21), and {22),
we use the expansion formula, which is given in
906. 05 of Ref. 6:

2 I 2N L., .
Jy= 7 ——-M._sz 2ym
2 m@ A 4m4](m| 2(] (a )

Now from Eq. (22) and 02 = —2¢2K2/[I(l + 1)]22 to
the second order in g, we get

6I( )= K(’Y -—-S)
= {K2g2n/4[1(1 + 1)]3/2}(1 + 5/81( + 1)). (23)

This comparison in the small g limit is shown in
Table 1. We see that it is agreeing in this limit. And
the agreement improves as [ becomes larger.
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It is shown that by constructing explicit realizations of the Clebsch~Gordan decomposition for tengor products
of irreducible representations of a group G, one can derive a wide variety of special function identities with
physical interest, In this paper, the representation theory of the harmonic oscillator group is used to give
elegant derivations of identities involving Hermite, Laguerre, Bessel, and hypergeometric functions,

1. INTRODUCTION

In two recent papers Armstrongl and Cunningham?
have employed Lie algebraic techniques to compute
some integrals which are useful in the quantum
mechanical treatment of the hydrogen atom. An
advantage of such techniques is that they allow one
to compute desired matrix elements for a quantum
mechanical system directly from the symmetry pro-
perties of the system. There is no need to appeal to
special function theory for an independent derivation.
Moreover, the corresponding special function iden-
tities themselves can be more simply and elegantly
derived on the basis of group theoretic considera-
tions. The identities useful in quantum mechanics
tend to be exactly those which are derivable from a
study of the symmetry groups of quantum mechanical
systems,

In this paper we extend the single example of Arm-
strong and Cunningham to a general method for the
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derivation of special function identities. The method
is simple to describe. Let {vj} be a family of irre-
ducible representations of the Lie algebra G and sup-
pose the tensor product v, ® ¥, can be decomposed
into a direct sum of representations

Een(k )y,

where the multiphmty n;(¥,1) is either one or zero.
Let {1$/} be a suitably chosen basis (which we call
canonical) for the r é)resentatlon space of v;. Then
the vectors {4{¥) ® r®} form a basis for the repre-
sentation space V of v, ® ;. On the other hand, from
expression (1. 1) we see that for eachj such that
ni(k, 1) = 0, we can find vectors {H{/)} which form a
canomcal bams for that subspace V; of V which trans-
forms 1rreduc1b1y under v;,. As is well known, the
vectors {H(J can be expressed as linear combina-
tions of the h{k) ® K4} via the Clebsch—Gordan (CG)
coefficients

v, Qv = (1.1)
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perties of the system. There is no need to appeal to
special function theory for an independent derivation.
Moreover, the corresponding special function iden-
tities themselves can be more simply and elegantly
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tend to be exactly those which are derivable from a
study of the symmetry groups of quantum mechanical
systems,

In this paper we extend the single example of Arm-
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derivation of special function identities. The method
is simple to describe. Let {vj} be a family of irre-
ducible representations of the Lie algebra G and sup-
pose the tensor product v, ® ¥, can be decomposed
into a direct sum of representations
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HD =2 C(k,m;1,nlj,p)iP @ B, {1.2)

mn
Also, relations (1. 2) can be inverted to express the
{n$®) ® B} as linear combinations of the {H{/’}. We
suppose that the coefficients C(+) are known.

Consider a realization (model) of v, ® v, such that V'
is a function space. Then the k(¥ @ () are functions
and (1. 2) shows us how to construct the functions
H{7), If, however, we can compute the functions H(7)

directly from our model, we can view (1.2) as an
identity relating two families of functions.

Armstrong and Cunningham considered an example
where G was si(2, R), {1} was the discrete series of
representations, and V was a functional Hilbert space
such that the basis vectors i{#’ ® h{), H()) were com-
putable in terms of Laguerre polynomials. Substitut-
ing these results into (1. 2) and using the known CG
coefficients for the discrete series, they obtained an
identity obeyed by Laguerre polynomials., (Actually
these authors computed the matrix elements

H, hE @ 1), (1.3)

where (-, +) is the inner product on V but that is
equivalent to a knowledge of (1.2). Rather than study
(1. 3) via the Wigner—Eckart theorem, we choose to
examine the sums (1. 2). This is because {1.2) makes
sense in many cases where there is no convenient
inner product space structure on V.)

The key to obtaining a variety of useful identities is
in the construction of models of v, ® ;. Once a model
is constructed the identity follows automatically, The
author’'s works3~6 contain a classification of these
models for many of the symmetry groups of physics,
in which the representation acts via differential and
difference operators. Thus, choosing appropriate
models from these papers we can substitute into

(1. 2) and obtain a wide variety of special function
identities.

In this paper we consider the Lie algebra of the har-
monic oscillator group S, a group which arises in the
study of the harmonic oscillator problem in quantum
mechanics. The irreducible representations and CG
coefficients for S are computed in Ref. 3. In particu-
lar, some of the CG coefficients are expressible as
hypergeometric functions and some as Laguerre
polynomials. By choosing appropriate models we
obtain identities involving Hermite, Laguerre, Bessel,
and hypergeometric functions.

The identity (5. 14) may be new. All results are ob~
tained with a minimum of computation. We do not
attempt to list all possible models but only a few
which lead to especially interesting formulas.

In a subsequent paper we shall apply this method to
the Lie algebras su(2) and sl(2, R), the latter related
to the hydrogen atom problem. The CG coefficients
and special function identities for these algebras are
considerably more complicated than those presented
here.

Unless otherwise stated, all variables appearing in
this paper are real.
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2. THE HARMONIC OSCILLATOR GROUP

We designate by S the real four-parameter group of
matrices

1 fetiow  ib—wiw d
0 eic 1w 0

w,a, b = , (2.1)
g{ } 00 1 0
00 0 1

where w =x + # < C and «, § are real. The group
multiplication law is
g{w9a’ 5}.g{w’, a,’ 6?} :g{w + e_iaw” a + a”

5 +6 + %(;wae’ia ...wa’eia}. (2. 2)

In particular, £{0, 0, 0} is the identity and the inverse
of a group element is given by
g Hw,a,8} = gl eiow, —a, o}, (2.3)

As a basis for the Lie algebra $ of S we choose the
matricesd;, d5, 3,9 such that

g{x, 0,0} = expx &,
£{0,0,8} = expdd.

gliv, 0,0} = expy &,

(2.4)
£10, ¢, 0} = expa gs,

It is easy to verify that these matrices satisfy the
commutation relations

[91, 921 =29, [93,8,]= s,
{(gkyg] = Ox

[331 52] = gls
k=1,2,3. (2.5)

where O is the zero matrix. For many purposes a
more convenient basis is provided by the matrices

gi =:F32 +i519 g3 = igsy &=—18
in the complexification of §. Here,

(93, 8% 1=+ g%, [9V,971=-26,
[6,9*1=[6,9%]=0.

The unitary irreducible representations of S were
determined in Refs,3 and 7. We list the results as
given in Ref. 3. (In this reference, representations
of the factor group S/D are computed where D is the
cyclic group generated by exp2r J,. However, the
modification of these results to compute represen-
tationg of S is trivial.)

(2.6)

There are four classes of unitary irreducible repre-
sentations. The first class consists of one-dimen-
sional representations and is of no concern to us.
The second class consists of representations (A, /)
where both X and ! > 0 are real numbers. Each (A, )
can be defined on a Hilbert space ¥ with ON basis
{h,:m =0,1,2, -}, Indeed, the defining relations
are

I3, = (0 — N, Eh, =k

n n
Jth, = [I(n + 1)]1/2p

sl JH, = (Zn)l/zh,rl, (2.7
n=20,1,2,...,

where Jt,J3, E are the linear operators on X cor-
responding to g*, g3, E in the Lie algebra represen-
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tation induced by (A, 7). The unitary operators U(g)
which define the representation on 3 have matrix
elements:

u

n,m

(&) = (h,, U(g)h,,) = exp[ia(x —m) + il6

2 N\1/2
+ i{n — m)0] exp (—-« l—;——) 12—,—)

X (yll/Z)m—nLém'n)(lyZ), (2.8)
where (-, -} is the inner product on 3€and L{®(x) is
an associated Laguerre polynomial (See Ref. 8, Vol.
II). We have introduced polar coordinates 7ei® = $w.

The third class consists of representations (A, —/)
where again [ > 0 and A are real numbers. The re-
presentations are defined on the same Hilbert space
JC, but the defining relations are now

J3, =(~x—n-—1h,, Eh =—1Ih,
Jth, = (ln)l/zkn_l, Jh, = [ln + 1)]1/2h”+1, (2.9)
n=0,1’2’....
The matrix elements are
V, m(&) =, V()h,) = explia(x +m + 1)
—il§ + ilm —n)0]  exp(— $ir2)
X {nl/m1)1/2 (_lley)m*nLrsm“n)(llyZ)’ (2.10)

where 2rei® =w,

The fourth class contains representations of the form
[p, s] where p2 > 0 and s are real numbers with 0 <

s < 1. There is an equivalence [p,s}= [—p,s], but
all other pairs of representations are inequivalent,
Each [p, sg can be defined on a Hilbert space X with

ON basis {k,: m =0, 1, + 2,+-+}. The defining re-
lations are

J3k, = (m+s)k,, Ek,=0

JYR, =pk, .4, Jk,=pk, 4, (2.11)

m=0,+1,£2 ...,
and the matrix elements are given by
W, (&) = (&, ,W(g)k,)
— (_i)n-mei[(m-n)o+(m*s)a]Jn_m(py)’ (2. 12)

where g = g{2rei®, a, 5} and J, (x) is a Bessel function
(Ref. 8, Vol. II). '

Of special interest to us will be the Clebsch-Gordan
series for the decomposition of a tensor product of
two irreducible representations of S into a direct
sum of such representations. Again we quote the
results from Ref. 3. First we have the decomposition

[e°]
MDA, oM +A —a, l+17), (2.13)
a=Q

A natural basis for the Hilbert space X ® &’ corres~
ponding to the left-hand side of this expression is
givenby {n, ,=h, ®h):n,p =0,1,2,* -}, while a
canonical basis for the subspace transforming accord-
ingto (A + A’ —a,l + ) is denoted {n{}*A'-a.021);

m =0,1, -}, The CG coefficients relating these
bases are

J. Math. Phys., Vol. 13, No, 5, May 1972

K[i,n;0,pla,m] = (h, ,, Bh+r=at:00)y (2.14)
where {-,+)’ is the inner product on ¥ & 3¢'.
Explicitly,

1/2 "1/2(pu —
exp(l {zu + xv) + I'1/2(wu zv))
1+ 1)1
&, Zlwmynyp

= X  K[l,nlplaym] ————, (2.15)

a,mn,p=0 (@l minipt)1/z

It follows that these coefficients are zero unless
a +m =n + p. Furthermore,

K[l,n;l'ya + m —nla,m] = (—1)mn
><< all’ /1) mn! )1/2
mia +m —nl(1 + 1'/l)etm

Fl—~m,n—a—m:n—m +1;—U/1)
i T —m + 1) - » - (2.18)

X

where Flo, B;v; 2) is the hypergeometric function and
I'(z) is the gamma function (Ref. 8, Vol.I). In Ref. 3,
several identities are derived for these coefficients
based on relations (2. 14) and (2. 15).

The CG coefficients for the decomposition

o0
=D, ~IN= 2L e+ +ta+1,—1-1)
a=(

(2.17)
are given by
By s BQ N0 100 = K[ U, pla,m],  (2.18)

identical with (2. 14).
1> I'> 0, we have

fee]
MDeW,—1N= e+ +a+1,1—0) (2.19)
a =0

with CG coefficients
{h, ; KON LY = GlLny I jla,m).
Here,
Gll,ny VU, jla,m] = (1 — U /OY2K[l — ', n; 1, alj, m].
(2.21)

The representation [p,s]® (%, ) can be defined on the
Hilbert space X ® ¥. The Clebsch—Gordan series is

(2.20)

o0
P,sle, D= 2 o(a—s +a,l) (2.22)
g0
and the CG coefficients are
(b, ® by, B 5*a.1) = E(n,j;a,m;p2/1), {2.23)

where {h}-s*a.d;m = 0,1, 2, -+ -} is a canonical basis
for .\ —s +a,l) and (-, -)’ is the inner product on
X ® 3. These coefficients are zero unless
m —a =n +j,in which case
E(n’]; a:m;pz/l) = E(ﬂ + a,j;o,m;pz/l)
:E(m —],];o,m;pz/l) (2'24)
= (j/mN)1/2 exp(— p2/21) (p /1L/2)mi Lim(p2 /1),

The CG coefficients for the decomposition
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o
p,s]l@e,—0)= 2, e(—s +a,—1) (2.25)
a=-0

are essentially identical to (2. 23) so we omit them,
Finally, the representations (x, 1) ® (', — 1} and
[p,s]® [p’,s’] have direct integral rather than direct
sum decompositions and we will not consider them
here.

1t follows immediately from their definitions that the
CG coefficients satisfy unitarity relations. For
example, from (2, 14) we have

0
2 K[l,ny;0pyla,m)K[lny U,pola,m)
a,m=0
= Oy,n, 05,0, (2.26)
o0
n?(} K[l,n; U, play, m)K[L,n; ', play,m,]

=6 ) .
alaz mlmz

{(Note that these coefficients are all real.) Similar
relations hold for the other CG coefficients,

3. IDENTITIES FOR THE MATRIX ELEMENTS OF S

As our first application of the preceding results we
consider models of the representation (A, ) ® (\', ')
in terms of functions on the group S. Let § be the
space of all functions f(g), g €S, defined on S, The
operators P(g),

[P(g)f](e’) = fle'g), &£,8 €S, (3.1)

letermine a representation of S on &, the left vegular
representation. Let UMD (g) be the matrix element
(2. 8) corresponding to (X, ) and (for fixed b) define
functions %,(g) = UX,2(g), n =0,1,2,...,in §, Then

[, ](8) = UMD (£'8) = 53 U2 (2lite)  (5.2)
2

so that the{k(g’)}form an ON basis for a Hilbert sub-

space of & which transforms according to the irre-

ducible representation (A, 7)., The last equality in

(3. 2) follows from the group multiplication property
o

Uh2(g'8) = . A UNI(g') USg), gg'€S, (3.3)
e

of the matrix elements.
1t follows that (for fixed b, ¢) the functions

b (8,8") = UND( UL (g),  n,p=0,1,2,, S

on the group S X S form a natural basis for the rep-
resentation (X, 1) ® (', ') under the left regular re-
presentation. Using (2.13) and (2.14), we see that the
functions

o0
KON e (g gr) = ?0 K[{l,n;',pla,m]
X UAD(UN(g), m=0,1,2,---, (3.5)

form a canonical basis for a model of A + )’ — a,
1 +17'). (Note that K[+] is zero unlessn +p =a +m.)

We shall obtain an identity for the matrix elements
by computing the functions hf,{‘”"‘&f*;g =n2(g,8’) in
an alternate manner. This computation makes use of
the obvious properties:
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o0
ha(hh' k') = 25 UGGN-aU) (h)he (k) h k' k € S,
=0 (3.6)
and
U,E}\,Z) (e) = 6?1,771! (3_ 7)

where ¢ is the identity element of S, Setting g’ = ¢ in
(3.5), we find

ha(g,e) = K[l,a + m —c; I, cla,mul),_(g).

Substituting this result in (3.6) with2 = ¢, 2’ =g,
h = g(g’)"1, we obtain

o0
hi(g,8") = ZOK[l,a +j~c;l,cla,j]
e

X U -a D (g UMD, (g(g')1). (3.8)
The desired identity follows from a comparison of
(3.5) and (3. 8). In particular, if g = g*, we find the
familiar identity:

2 K[Ln; U,pla, m U ()UL 1 (8)
=K[L,b;',cla,b + ¢ —alURR5H 0 (g). (3.9)

This identity can be written in several equivalent
forms by making use of the unitarity of the X coef-
ficients, Substitution of relations (2. 8) and (2.16) into
(3. 9) leads to a special function identity. Similar
identities can be derived in the same manner corres-
ponding to each of the coefficients G[+] and E[+].
Some of these are listed in Ref. 3.

4. IDENTITIES FOR HERMITE POLYNOMIALS

We now search for additional models of the repre-
sentations (A,* !) and {p, s]. Many such models have
been classified in [3]~[6] in terms of Lie algebras of
differential and difference operators. We select a
few of particular interest.

As shown in Ref. 3, the operators
d d

F o - —
JT= dx+lx’ J"_dx’ E=1,
2
J?:——'l“l—dw*)‘ﬂ-—k, (4.1)
dx2  dx

and basis functions
h,(x) = 277/2(n !)‘1/2Hn(xx/l/2), n=012,..., (4.2)

determine a model of (A, [}, where H,(x) are Hermite
polynomials (Ref. 8, Vol. I). Another model is given
by the operators

. 9, Ix of 0 | Ix
+ = pio| 2 ot - Of . sl —
J e ( P + 2), J et (ax + 2> E=1

d
3—‘-..._._._-
J 28@

and basis functions

B, (x,0) = 27n/2(n1)~1/2 exp(— Ix2/4)H (xVI/2)
X gilri-No, (4.4)

(4.3)

Suppose the operators J%,J3, E, and J;*,J;3, E), are

X7 X

given by (4, 1) and define models of the represénta-
tions (x, ), {(r’, I'), respectively. Then the operators

JE=JF +JF, JP=J3+J3, E=E +E; (4.5
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and basis functions

h, ,(%,5) = By (%), ()
= 2700/ 2(n1p! )—1/zgn(xm)ﬂp(xm) (

define a model of (A, 1) ® (A\’,1'). We will use (2 13)
and (4. 5) to compute the basis functions kQ+2"~2.1+)
= hi(x,y) directly. It is easy to verify that the equa-
tions

Jha=0, J3h2=—@ +r)he (4.7)
for h2(x,¥) have unique solutions,
ho(x,y) = c,27%/2(a N-1/2H [(x —y WU/ + 1],
a=0,1,2,..., (4.8

where the ¢, are constants. The remaining basis
functions can be obtained from the recurrence rela-
tion

JYhe = [(m + 1) /(1 + 1) /2ng,,, m=0,1,2,"

(4 9)
The solution is

he(x,y) = ¢, (21'y ™/2(1 + I'Ym(m!)~1/2H, (u)H,,(v)
i Ix + 1y

u = m—,—(x -9}, =-—2—-l—‘/,_(_:i_———7;), {4. 10)
am=0,1,2---.
To compute ¢, we use the fact that

which follows from the explicit expression (2. 16) for
K[l,k;1',a —kla,0]. Comparing the coefficient of x¢
on both s1des of thxs equation, we obtain

o, = (= 1)2. (4.12)
On the other hand, (2. 14) yields the relation
he = 2 K[l,n; V', pla,mlh, ,. (4.13)
n’p

Substitution of (2.16), (4. 86), (4.10), and (4. 12) into
this relation yields the desired identity.

Another model of (A4, ;) ® (A, ,) is provided by the
operators (4. 3) and basis functions

h, 5%, ©) = 2702/2(uipl)=1/2 exp(— 1x2/4)
X H,(xVT,/2)H,(xVT,72)ei® #7290

= h,(x, O)h(x, 0), (4.14)
where [ =1, + l,. Indeed,
JYh, =h(x, O)eio(—;__.: + f_zi) h(x,0)
+ hy(x, O)ei 0(--3 + -l-—)hn(x 0)
= mhu‘pwfl + mhm,p (4.15)

with similar formulas for the other operators (4. 3).
On the other hand, from (2. 13) it is obvious that the
basis functions k2 for this model are given by
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ha(x, 0) = ¢,27"/2(m!)~1/2 exp(— ix2/4)
x Hm (xm— )ei(m-)\x-)‘zw)ﬁ’
where ¢, is a constant, We can use the identity (3.11)

with I = 1,, I' = I, to compute c,. Indeed, comparing
coefficients of x0, we find

(4.18)

c (—- 2)2/2(g1)1/2/{a/2)! if a is even

a if a is odd. (4.17)

(Note that (4.18) is actually the special case x =y of
the first identity derived in this section. However,
the method of proof is much simpler.)

For our next model we observe that the operators

d 2 . 9
K- =¢gio— K3=-—15@-,

Kt =—ei%97, %’
(4.19)

E=0
and basis functions

k"(x, 0)=(—im giln+s)0rips gy = 0,£1,£2 --- ’(4.20)

define the representation [p, s]. Therefore, the opera-
tors (4. 3) and basis functions

k, ® b (x, 0) = (—i)273/2(j1)-1/2
x exp(+ ipx — Ix2/4)H; (VI72)
x expli(n +j +s — )0},

J,xn=0,1,2,..., (4.21)

determine a model of [p, %@ {1, ). From the explicit
form of the operators (4. 3}, we can directly compute
the natural basis functions h(* s+ad(x, 0) = ha(x, ©)
corresponding to the Clebsch—Gordan series. The
resulis are clearly

ha(x,0) =c,27m/2(m!)~1/2 exp(— Ix2/4) H,(xV1/2)
X eilmss-alo  (4,29)

where ¢, is a constant, We compute the constant by
evaluating the expression

=]
hix,0) = Z)O E(—j —a,j;a,0;p%/Dk_; ,®hx, 0)
P

(4.23)
at x = 0. the result is ¢, = 7%, so the identity

hg = 23 En,j;a,m;p2/l)k,® (4. 24)

Jn

becomes (after some simplification)

exp(p? — 2ipx) Hy(%) = ?30 (— 2ip)mI Lim- N2 DH,(x).
2

A different group-theoretic interpretation of (4. 25)
is presented in Ref. 3, p. 1086,

The operators

K*=pel°, K =ped, Ki=—il, E=0
(4.26)
and basis functions
B (0) = ei(n*90  n=0,£1,22,-", (4.27)
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define another model of [p, s]. It follows from this
remark and expressions (4. 3) and (4. 4) that the

operators
l of @ 1
J+:ew(—a-+—;‘-+p> J-=e w<a +—2£+p>
E =1, J3:—zﬁ {4.28)
and basis functions
k, ® by(x, 0) =k (O)k(x, O)
= @i(n+s)0277/2(j1)~1/2 exp(— Ix2/4)
X B(xT72) im0,
j,xn=0,1,2---, (4.29)
define a model of [p, s]® (x, ). In particular
TR = (0eio%k) b, + & ee<_-aa—+l;‘>;z
(4.30)

J3[knhj]< aOk)h +k< a—%h]),

with similar interpretations of the remaining opera-
tors. We can again compute the basis functions
hQ-s+a.D(x ©) = h2(x, 0) directly from (4.28) and
(2.7):

ha(x,0) = ¢, 27m/2(m!)-1/2 exp[— Ux + 2p/1)2/4]
X H,[(x — 20/INT/E | eitmres-are,

As usual, we compute ¢, by evaluating (4.23) at x = 0,
The result is ¢, = 1, so our new identity becomes

(4.31)

exp[~ 2xp — p2|H,(x + 2p)

18

(4.32)

(2p) ™3 L{m(202) H(x).
0

A different group-theoretic derivation of this for-
mula is given in Ref. 3, p. 106.

.
t

We omit the routine computation of the identities for

Hermite polynomials obtained by decomposing (A, /)

®M,—1).

As a concluding remark we note that the identity

277/2(nl)~1/2H [(21)-1/2(J+ + ")k, = h,,
n=012..., (4.33)

holds for the model of (A, I) defined by (4. 1), (4. 2),
since J* +J~ = Ixr, Therefore, (4.33) must hold for
all models of (A, ) as classified in Refs,3-6. This
identity is by no means obvious for the remaining
models considered in this paper.

5. IDENTITIES FOR LAGUERRE FUNCTIONS
As shown in Ref. 3,p. 111, the operators

of O ; 9 70
+ _ piof 9 _ - = 0
J_e1<a l), J e’< +a>

J3:-i5%, E=1 (5.1)
and basis functions
R,(x,0) = (n!)1/217/2(Ix) A nLOn)(Ix) i~ No,
n=0,1,2,---, (5.2

form a model of (A, ). It follows that the operators
(5.1) and basis functions

B, o, 0) = b, ® h = (uip!)1/21 2 b 2

X x A P pL(x1 n)( x)L‘gxz—p)(lzx)ei(n+p-)\1-)\2)e' (5.3)
define a model of (A, [,)

Here,

T, i) = b€l (ix-l)h[;+hpei0(%——ll>hn (5.4)

with a similar mterpfetatlon for the other operators.
The basis functions h (x 0) = hi(x, O) for
this representation are easily obtained from (5.1)
and (5. 2):

® Ay, 1,), where I, + 1, = 1.

ha(x, 0) = c,(m!) 2121y e L T g
x g N Ao m,a=0,1,2,+-. (5.5)

The value of ¢, follows by equating coefficients of

M2 o1 both sides of expression (4.11) (I =1,
U= 12).
P(XZ + 1) A+a/2 )\ -a/2 +a/2
€ = F(A2~a+1)1 (I; + 1) N
X Fil=a;—asa, —a +1;~1,/1;). (5.6)

Thus,
21 K{ly,n31y,0 la,m) (aip!)1/203:7 2

x 1y PP LN ) L0 1)

= cum!) 21y + 1) MR DG g,
(5.7)

In the special case where A, and A, are integers, this
identity reduces to (3. 9).

We can construct another model related to Laguerre
polynomials by observing that the operators

o 0 L a . 1 .0
+ 510 - O _ - — 3 - PR
Kt =e 3x K —el<xax+ae>, K3 = isg
E=0 (5.8)

and basis functions

kn(x, 0) = x‘(n+s)/2€]_n_s(2p‘/x_)ei(,”s)o’

n=0,+1,%2,..., (5.9)

form a model of [p,s]. Hence, the operators (5.1)
and basis functions

k, ® hix, 0) = (j 1)1/205/2(1x) \ix-+s)/2
X L, (20vx ) LA (Ix) g6 +s5~M)e,

Jyin=0,+1,£2 ..., (5.10)

determine a model of [p,s]® (A, ). The basis func-
tions AQ"5*4.2 = pa can be computed directly from
(5.1) and (5.2):

ha(x,0) = c,(m!)1/2]m/2(ix)rs+a-m[Q-s+a=-m)([x)

i(m-A+s-a)o — eos
x eilm-A+s a)’ a,Tﬂ—O,l,Z,

(5.11)
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9

We compute the constants ¢, by comparing coeffi-
cients of x> s*% on both sides of (4.23). The result is

_ exp(—p2/21) (p\a-s —xa-—s +1;p2
=T o kT +1(z> 1F1( I

- e of) e B 00 (),

. . (5.12)
so that the identity
k, ®h =Zn.} E(n,j;a,m;p2/1) hQs*a:d (5.13)
reads
exp(pZ) (pzx)(’“s)/zJ-n-s(zpﬁ )Iﬁ()\-j)(x)

© '(x +1) i 7t
=z rix +m—n—j._s+1)(P2) iL{m(p2)

m=0

X L{n-n3 ) (p2) L5 n-x),

(5.14)

Ifrx=j=0,n+s=—a,l=1,this formula simpli-
fies to the well-known expression

fudd 2m L)
exp(p?)p2e) /2 (20F) = 23 AW (5 45

The special case of (5.14) withj = 0 was first de-
rived by Erdelyi in 1937 (see Ref. 9, p. 141). However,
the general formula withj # 0 may be new,

It is a routine computation to obtain models of the
representation (A, 1) ® (A’,— '), but this will be
omitted.

6. DIFFERENCE OPERATOR MODELS

In this section, we construct Lie algebra models
using difference operators. These models were clas-
sified in Ref. 4.

The operators
Kt = e*i6(— L + 1),
K-:e-io<_(x +1)R +x+1+ai%>, (6.1)
7]
3 — 7 =
K3 =—1 39’ E=0
and basis functions

kn(x7 O) = p'an(‘n‘S)(pZ)ei(n'Ps)O’ h= oyi lii 27 ey

(6.2)
define a model of [p, s]. Here,
Rf(x,0) =f(x +1,9), Lf(x,0)=flx—1,0). (6.3)
On the other hand, the operators
HYf =— e, H- = ie‘io(;—@— + “§ , H3=—i é%’
E=1 (6.4
and functions
h,-((“)) = ( — 1)ili/2(j1)-1/2¢iG-No,  j =0,1,2,...,
(6.5)
define a model of (A, I). Thus, the operators
Jt=e'i0(—L—1+1),
J"=e'i0(——(x+1)R +x—h+1+-a£%>, (6.6)
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I3 =—1i = E=1]

20?

and functions
By @ Ry(x, 0) = (— VT )i(j 1)~ 11207 LEn= s p2)eilnsies-nre,
(6.7)

determine a model of [p,s]® (A, 7). We can compute
the basis functions hQ"s*a.1)(x, 0) = ne(x, 0) directly
from (6. 6), (2.7), and (2. 22), with the result
I'ix —s +a +1)

I'x +1)

X Fi(—m,s —a;s —a—x;1"1)eilmr+s-a)0 (6, 8)

ha(x, 0) = c,(— VI )m(m!)-1/2

(Here, ¢, could be a periodic function of x with period
one. However, it is easy to check that ¢, is actually

a constant.,) The constant ¢, can be evaluated from
expression (4. 23). Indeed, comparing (4. 23) and
(5.14) withj = 0, x = 0, we find

¢, = p°® exp(p2 — p2/20}/T(@a —s + 1), (6.9)

Thus, the identity (5. 13) becomes

exp[p2(1 — 1)]LEX1p2)
A (xta+m—~j)(=lp2)mi
IR S

X Fi(=m,j~a—m;j—a—m—x;I"1)
% Lj(m'l')(pz)_ (6.10)

For our last example we consider the operators

Jt=ei0(— L ~1—1" +1),

J-= e-w(_ (¥ + R +x—x +1 +é%) (6.11)

.0
3 . —_ !
J" 160; E—-l+l.
The functions

(=VT) (=VT)2 Tx +2' +1)

hn'p =hn®hl;(x,0)= J,;T \/P—l' r(x+1)
X (=P, — ;=2 —x;'71)
x exP(n +p— —‘)\,)ioy np=012...,
(6.12)

and these operators define a model of (A,) ® (A, [’).
[In particular, the action of the operators (6.4) on the
{n, ()} yields (r, 7).] Computing the basis functions
h2 = BQ+\'-a.:U)(x O) directly, we find in analogy with
(6. 8):

ha(x,0) =c, CATPIx + A —a )

ymT T'x +1)
X JFi(—m,a —Nja~\ —x; (I +1)°1)
x eilm+a-x-ANo, (6.13)
Using (4. 11) to evaluate the constant, we obtain
Ca =<):1> val(l + Uy e/2(l/1)a/2, (6.14)

The resulting identity is
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(= 1)nlmn,Fi(—m,n—a—m;—n—m +1;—=1"/1)
(a+m—n)IT{n—m +1)
X JFi(n—a—m, —N;— X —x;1'"1), (6.15)
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Note on the Explicit Form of Invariant Operators for O(n)

Takayoshi Maekawa
Department of Physics, Kumamolo University, Kumamoto, Japan
(Received 20 September 1971)

A complete set of invariants of O(n) is constructed explicitly and a method of deriving the corresponding in-

variants of O(p, q) is briefly remarked.

It is assumed that the invariant operators for a Lie
group are clarified implicitly by the researches of
Killing, Cartan, and Weyl. It, however, is important to
know the explicit form for the invariants in applica-
tions to physics. The subject is discussed by some
authors!™3 and an interesting form for the invariants
is given for some special groups. But it seems that
the explicit form for the invariants is not so simple
as the Casimir operator. In this note, we give a com-
plete system of independent invariants suitable for
uniquely labeling the irreducible inequivalent repre-
sentations of O(n). A further discussion will be given
in the near future together with some simple appli-
cations.?

The infinitesimal generators Dy, , 7, k=12 ...,n,
of O(r) are defined as the quantities which satisfy the
commutation relations

[Djk9Dl7n] = i(GjZka * OpmDjy — 85m Dy — leDjm)’ (1)
where D;, is antisymmetric (D;,= — D,;) and Hermi-

tian. As is well known, the orthogonal group O(n) has
[n/2] invariant operators, where [#/2] is equal to n/2
or (n — 1)/2 corresponding to even # or odd n. One of
these invariants is the well-known Casimir operator

F® = 3D, D; (2)

ik

where the superscript n of F denotes the dimension
number. Unless stated otherwise, similar notation
and the summation convention from 1 to #» will be
used.

We can give the result for the other invariant opera-
tors G{ as follows:

_ 2
GP = Lo <“.Z<)i (Ci(l’?z"'in-zp-z) ) (3)
1 72 n=2p-2
GP = C® foranevennandp = (n—2)/2, (4)

where p in (3) takes 1,2, ..., (n — 4)/2 for an even n
and 1,2,...,(r — 3)/2 for an odd ». It is straight-
forward to show that the G® in (3) and (4) are in-
variant. The sum on the right-hand side of (3) is

taken over all satisfying the condition i, < i, < +++ <
i{pop-2» The Cin (3) and (4) are given by virtue of Djk
as follows:

c® 1 i

wittimop  Qprl(p 4 1)1 a2 R tmepmitwep

tnmapiituapr2ttt T igoy iy,

§+ 1,

i, =4 1,
0,

Thus together with (2) and (3) [and (4) for an even z],

we have given the [r/2] invariant operators for O(n),
whose explicit expressions can be easily given.

for an even permutation (iqige**
i,) of (12-+-n),

for an odd permutation (f,i5--+%,)
of (12+++m)

otherwise. (5)

111,2...

It can be seen that these invariant operators are in-
dependent and suitable for labeling the irreducible
representations of O(n). In order to see the situation,
let us give an outline of the proof according to Bieden-
harn! and Micu?: When an invariant is evaluated in
terms of the highest weight L and only the highest-
order terms [only the terms containing the genera-
tors H; =Dy, 5,/ =1,2,...,[rn/2])] in the invariant
are considered, it becomes an invariant of the group
S (the group of reflections on hyperplanes perpen-
dicular to the roots). That is, the invariants F® and
G become

o 2
F® F6 — Z)L].Lj, (6)
Gp(n).—)aﬁ(n) =, E : (LifLiz. L; +1 2’ (7)
zl<12<..-<lp+l ?
G =GP =LyLy-+ L,
foranevenn andp = (n — 2)/2. (8)

These invariants of S have the properties: Their
Jacobian does not vanish identically and factorizes
into N[ = n(n — 2)/8 for an even# and (n — 1)(n + 1)/8
for an odd =] linear forms which, when equated to
zero, give the reflecting hyperplanes that generate the
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1 L.Armstrong, Jr., J. Math. Phys. 12, 953 (1971).

M. Cunningham, J. Math. Phys. 13, 33 (1972).

3 W.Miller, Lie Theory and Special Funclions (Academic, New
York, 1968).

4 W, Miller, J. Math, Anal. Appl. 28, 383 (1969).

W. Miller, SIAM J. Math. Anal. 1, 246 (1970).

[

w

6 W, Miller, SIAM J, Math. Anal. 2, 307 (1971).

R. Streater, Commun, Math. Phys. 4, 217 (1967).

8 A.Erdelyi e/ al., Higher Transcendenlal Funclions, Bateman
Manuscript Project (McGraw-Hill, New York, 1953), Vols. I, II.

2 H.Buchholz, The Confluen! Hvpergeome lric Function (Springer,
New York, 1969).

~

Note on the Explicit Form of Invariant Operators for O(n)

Takayoshi Maekawa
Department of Physics, Kumamolo University, Kumamoto, Japan
(Received 20 September 1971)

A complete set of invariants of O(n) is constructed explicitly and a method of deriving the corresponding in-

variants of O(p, q) is briefly remarked.

It is assumed that the invariant operators for a Lie
group are clarified implicitly by the researches of
Killing, Cartan, and Weyl. It, however, is important to
know the explicit form for the invariants in applica-
tions to physics. The subject is discussed by some
authors!™3 and an interesting form for the invariants
is given for some special groups. But it seems that
the explicit form for the invariants is not so simple
as the Casimir operator. In this note, we give a com-
plete system of independent invariants suitable for
uniquely labeling the irreducible inequivalent repre-
sentations of O(n). A further discussion will be given
in the near future together with some simple appli-
cations.?

The infinitesimal generators Dy, , 7, k=12 ...,n,
of O(r) are defined as the quantities which satisfy the
commutation relations

[Djk9Dl7n] = i(GjZka * OpmDjy — 85m Dy — leDjm)’ (1)
where D;, is antisymmetric (D;,= — D,;) and Hermi-

tian. As is well known, the orthogonal group O(n) has
[n/2] invariant operators, where [#/2] is equal to n/2
or (n — 1)/2 corresponding to even # or odd n. One of
these invariants is the well-known Casimir operator

F® = 3D, D; (2)

ik

where the superscript n of F denotes the dimension
number. Unless stated otherwise, similar notation
and the summation convention from 1 to #» will be
used.

We can give the result for the other invariant opera-
tors G{ as follows:

_ 2
GP = Lo <“.Z<)i (Ci(l’?z"'in-zp-z) ) (3)
1 72 n=2p-2
GP = C® foranevennandp = (n—2)/2, (4)

where p in (3) takes 1,2, ..., (n — 4)/2 for an even n
and 1,2,...,(r — 3)/2 for an odd ». It is straight-
forward to show that the G® in (3) and (4) are in-
variant. The sum on the right-hand side of (3) is

taken over all satisfying the condition i, < i, < +++ <
i{pop-2» The Cin (3) and (4) are given by virtue of Djk
as follows:

c® 1 i

wittimop  Qprl(p 4 1)1 a2 R tmepmitwep

tnmapiituapr2ttt T igoy iy,

§+ 1,

i, =4 1,
0,

Thus together with (2) and (3) [and (4) for an even z],

we have given the [r/2] invariant operators for O(n),
whose explicit expressions can be easily given.

for an even permutation (iqige**
i,) of (12-+-n),

for an odd permutation (f,i5--+%,)
of (12+++m)

otherwise. (5)

111,2...

It can be seen that these invariant operators are in-
dependent and suitable for labeling the irreducible
representations of O(n). In order to see the situation,
let us give an outline of the proof according to Bieden-
harn! and Micu?: When an invariant is evaluated in
terms of the highest weight L and only the highest-
order terms [only the terms containing the genera-
tors H; =Dy, 5,/ =1,2,...,[rn/2])] in the invariant
are considered, it becomes an invariant of the group
S (the group of reflections on hyperplanes perpen-
dicular to the roots). That is, the invariants F® and
G become

o 2
F® F6 — Z)L].Lj, (6)
Gp(n).—)aﬁ(n) =, E : (LifLiz. L; +1 2’ (7)
zl<12<..-<lp+l ?
G =GP =LyLy-+ L,
foranevenn andp = (n — 2)/2. (8)

These invariants of S have the properties: Their
Jacobian does not vanish identically and factorizes
into N[ = n(n — 2)/8 for an even# and (n — 1)(n + 1)/8
for an odd =] linear forms which, when equated to
zero, give the reflecting hyperplanes that generate the
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group S, In fact, the Jacobians become apart from a
numerical factor

AF®, GO, ...,G0, )
@, .o Clays) O(L;—L)L;+Ly) (9)
Ly, LgyeevyLysp) e

for an even n and

a(F("), (_;({’), T ,Eg‘)_:;)/z)

a(Ll, L2’ ceey L(n-l)/z)
X Lg-1)/2 iEI,- (L-L)(L; + L)) (10)

o Llec o

for an odd n». Thus it demonstrates that the invariants

F®and Eg‘) are a suitable basis for all the invariants

of S,and then F®and G are a suitable basis for all
the invariants of O(n).

Finally, it is noted that the invariant operators for the
noncompact group O(p, q)(p + q = n) are obtained ex~
plicitly from (2) and (3) [and (4) for an even n] by
means of the substitution D;, —iD;, for j=p,k = g,o0r
j = g,k < p and retaining other Dy, in its original
form.
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This series of papers presents an extension of Keller's diffraction ray method to problems involving two or
more parallel plates by introducing a modified diffraction coefficient which takes care of coupling along a
shadow boundary automatically. In Part I, a canonical problem was solved and the expression for the modified
diffraction coefficient derived. In this part, we give a recipe for how to use this set of rays and illustrate it
through several examples including (i) open-end parallel-plate waveguide, (ii) bifurcated waveguide, and (iii)
an infinite array of parallel plates. The above three examples represent the only three types of problems in
the edge diffraction theory that can be solved exactly by analytical techniques based on complex variables.

In this paper it is demonstrated that all three exact solutions can be recovered by the present ray method.
Moreover, in some problems where the analytical techniques cannot be conveniently applied, the ray method

can often provide a useful approximate solution.

1. INTRODUCTION

Recently there have been several efforts to apply the
geometrical ray method to diffraction problems in-
volving waveguide discontinuities in open and closed
regions. In attacking these problems, one of the most
important steps is to describe the interaction between
the upper edge and the lower plate for the structure
sketched in Fig. 1. In the celebrated method develop-
ed by Yee, Felsen, and Keller (YKF method),! this
interaction is accounted for by including the following
two sets of rays in the field calculations:

(i) the rays that bounce back and forth between the
two edges and

(ii) the rays that result from the multiple reflections
and diffractions along the shadow boundary at

z=0.
"[ i- (A8)
“,\\ Z
[IERN
N
b | \\
| \
VAN
FIG.1. Geometry of the canonical problem.
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The rays in (i) can be easily evaluated. Furthermore,
we usually have to consider the bounces no more than
a few times since the ray amplitude decays as (ka) /2
after the nth bounces (“a” is the distance between

two edges; see Fig.1). The calculation of rays in (ii)
is much more difficult. In the YFK method, it is
achieved by summing up the multiple scattering along
the shadow boundary based on a diffraction formula
obtained from the classical half-plane problem.2 In
other words, the solution in the YFK method is

“built up” from that of a single half-plane under the
assumption that 2b > 1. Normally we would expect
that the YFK method is valid only for reasonably
large #b. However, numerical results show that it
can give good accuracy for amazingly small b (e.g.,
b = 0. 2)) in some cases.

A different approach to describe this interaction
was taken in Paper I3 (hereafter referred to as I),
where we introduced a modified diffraction coeffici-
ent for the rays emerging from the upper edge. For
the special case kb — o, our modified diffraction
coefficient is reduced to that of a half-plane, and,

for finite %b, it includes the interaction between the
upper edge and the lower plate along the shadow
boundary at z = 0 automatically. Therefore, in apply-
ing our ray method to attack the problem sketched in
Fig. 1, it is only necessary to consider the rays in

(i) for the interaction part, but not the rays in (ii).
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The rays in (i) can be easily evaluated. Furthermore,
we usually have to consider the bounces no more than
a few times since the ray amplitude decays as (ka) /2
after the nth bounces (“a” is the distance between

two edges; see Fig.1). The calculation of rays in (ii)
is much more difficult. In the YFK method, it is
achieved by summing up the multiple scattering along
the shadow boundary based on a diffraction formula
obtained from the classical half-plane problem.2 In
other words, the solution in the YFK method is

“built up” from that of a single half-plane under the
assumption that 2b > 1. Normally we would expect
that the YFK method is valid only for reasonably
large #b. However, numerical results show that it
can give good accuracy for amazingly small b (e.g.,
b = 0. 2)) in some cases.
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ing our ray method to attack the problem sketched in
Fig. 1, it is only necessary to consider the rays in

(i) for the interaction part, but not the rays in (ii).
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Furthermore, it is important to point out that our
modified diffraction coefficient is derived from an
asymptotic solution of a canonical problem for large
ka,but not kb. Therefore, as long as the term
O(1/ka)can be safely ignored, our result is valid for
any kb, no matter how small it is. This explains the
fact that, in several problems with kg — ©, our ray
method recovers their exact solutions.

The purposes for this part of the paper are the
following three. First, we summarize the main re-
sults in I in a fashion such that without reading the
quite involved derivations and manipulations in I the
reader may gain a quick grasp of our ray method, and
especially of the rules in applying it to attack some
problems. This is done in Sec. 2 which contains
essentially the same material as that in Sec. 6 in L

A major difference between the presentations in these
two sections is that here we introduce only a single
modification function [i.e.f{8) in (2. 3)] for both in-
coming and outgoing rays. By doing so, the recipro-
city can be satisfied for this particular diffraction
ray. A new contribution of the present Sec. 2 is that
we give a recipe for the determination of the Green's
function G(a) in a given problem, which is of vital
importance in our later applications.

The second purpose for this part of the paper is to
illustrate the application of our ray method by con-
sidering several examples involving edge diffraction
in waveguides and periodic structures. The examples
are (i) bifurcated waveguide (Sec. 3), (ii) step dis-
continuity in waveguide (Sec. 4), and (iii) infinite
array of waveguides (Sec. 5). In the case of (i) and
(iii), our ray method recovers the exact solutions as
expected. For the problem in (ii), there is no known

analytical solution, exact or approximate. Hence, there

is no way to estimate the accuracy of the results
obtained by our ray method.

The third purpose for this part of the paper is to
make a quantitative comparison between the solution
for the bifurcated waveguide obtained by the YFK
method and that obtained by our ray method which is
also the exact solution. Since the YFK solution is
valid only for large waveguide dimensions, we need
to extract the dominant asymptotic term from the
exact solution for the purpose of fair comparison.
This is accomplished by using asymptotic formulas
developed by Weinstein,4 which are summarized in
Sec. 6 together with approximate formulas useful in
simplifying our solutions for small waveguide dimen-
sions. The comparison in Sec, 7 reveals that the YFK
solution checks with the asymptotic expression of the
exact solution in their first two dominant terms pro-
vided that the particular mode of interest is not close
to cutoff. Otherwise, the YFK method does not seem
able to provide a satisfactory solution.

2. THEORY

The canonical problem for our system of rays is the
one shown in Fig, 1, namely, the diffraction of a plane
wave by two staggered parallel plates. The incident
plane wave can be either TM(Hy,Ex,EZ) or TE(E,, H,,
H.). This problem has been rigorously solved in I by
the Wiener—Hopf technique, and its solution arranged
in a form which admits a ray interpretation. The
main conclusions are now summarized below.

A. Modified Diffraction Coefficient

To introduce our modification conveniently, consider
first the special case kb — . In the absence of the
lower plate, the field ¢ (representing H, for TM and
E, for TE) on the ray diffracted at the edge of the
upper plate is given by the well-known expression
[for exp(— iwt) time convention]

Y (x,z) = (ei®o1/4)/V2mkp)D(6,0), (2.1)
where 6, is the direction of the incident plane wave
(with unit amplitude at x = 2 = 0) and (p, 9) is the
observation point. The factor D(6, 9,) is known as the
diffraction coefficient (for a half-plane):

2i sinz6, sinz6
—_— for TM,
cost, + cosd
D(6,80) = -
(©: 69 — 2i cos36, cos30
for TE, (2. 2)

cos@0 + cos6 ?

where the angles 0 and 6, take values between — 7
and 7, For finite 25, the diffraction coefficient is
modified in order to take into account the interaction
between the upper edge at x = z = 0 and the lower
plate along the shadow boundary z = 0. Our result
indicates that the modified diffraction coefficient
D(6, 6,) takes the following form:

D(6,64) = D(6, 8,1 (6)f (), (2. 3a)

—1—]
(a}

(d)

FIG.2. Various rays in the canonical
problem.
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where

G.(— k cosb),
o) = {[ G.(k cos6) 1,

where G, (a) is the “plus factor”5 of the normalized
transformed Green's function, and will be detailed in
subsection B below. The result in (2. 3) is correct

to the order of (ka)~1/2. Note that a = b csc Q. Thus,
provided © is small enough, (2, 3) is valid for any kb.
It should be emphasized that the modification in (2. 3)
takes care of the multiple reflections and diffractions
along the shadow boundary (z = 0) only, whereas the
other interaction between the upper edge and the
lower plate must be accounted for separately.
Examples of latter types of interactions are the
specularly reflected ray® shown in Fig. 2(a) and the
ray bounced between two edges in Fig, 2(b), both of
which can be easily calculated. For diffraction at

the lower edge at (x = — b, z = I), the diffraction
coefficient is given by D(6, 6,) in (2. 2), not D(8, 0,)

in (2. 3). This is because of the fact that no shadow
boundary can be found between the upper plate and the
lower edge.

1/2 < |8y] < =,

|6 < m/2, (2. 3b)

B. Green's Function

The function G, (o) is related to the (normalized,
transformed) Green's function G(a) by &7

_ 00 ln G( B)
Gla) = 5o [ = d,

S-Source LZ

-0 +m

(2. 4)

&U’-’l

~oe] o o
I—;.

(c)

FIG.3. Configurations for calculating
the Green's function G(q).
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which may be identified to the “plus part”? of G(a)

in the Wiener-Hopf technique. The function G(a) is
the normalized version of €(x = 0, @), which is the
Fourier transformed Green's function for the tangen-
tial electric field (i.e. ,E, for TM and E for TE) due
to a point source at x = z=0ina conﬁguratlon
shown in Fig. 3(a), The normalization!9 is chosen
such that

Gla)=€(x=0 a)/[llm e(x =0, a)].
b0
To determine €(x, a) we may follow the following
procedure.? The Green's funetion in the spatial
domain satisfies the wave equation

(2.5)

<a—2 + 02 +k2>E(x z) =

9x2  §z2 o(x)OL),

(2.6)

where E stands for E, in the case of TM, and Ey of
TE. Taking the Fourier transform of (2. 6) defined by

er, @) = [ E(x, 2)eiesdz, (2.7
one has
<é%22 — 2) e(x, @) = — 5(x), (2. 8)

where y = Va2 —k2 = — jvk2 — a2, With the boundary
condition that e(x = — b, @) = 0, it is a simple matter
to derive the result

e(x=0,a)=(1 —e21b)/2y, (2.9)
1t follows from (2. 5) that
Gla)=1—e 210, (2.10)

With G(a) given in (2. 10) the integral in (2. 4) can be
carried out explicitly with the result1l

G.(@)=V2kb /1 + g e‘iﬂ/‘l,/smgb
iab

x exp[T< 1—0.57721 + 1n—5 tig >]
el ) i (1 Fese @1

n,

where 3, = [(n7/b)2 —k2]1V/2 = — i[k2 — (nn/b)2]1/2,
A short numerical table for G,(a) was given in L
Further discussions on the computation of G, (o) will
be given in Sec. 6. A fact worth emphasizing is that
in a given problem the function G(a) is identically
the same for TM and TE waves.

C. Ray-to-Mode Conversion

Referring to Fig. 2(c), let us express the modal field
solution in the waveguide as

.
B

where ¢,, =2, m =0 and ¢,, =1, m = 0. For pro-
pagating modes, the contribution to C,, due to a given
ray is equal to

s/cos(nmx/b)(
cm ) +7mz (2.12)

sin (mnx/b)
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YO (x =0,z =0D(6 =0, — 7,0y

x [(2kb cos¢, ) TN, (2.13)
where ¢, = sin"1 (mn/kb) is the direction of pro-
pagation for the plane wave associated with the mth
mode. The first factor in (2. 13) is the amplitude of
the incident ray evaluated at the edge, and the factor
in [ ] in (2. 13) is the ray-fo-mode convevsion factor.
The constant N in (2. 13) is a normalization factor
and is equal to the ampltiude of the plane wave com-
ponent in the direction of 6 in modal field representa-
tion when evaluated at the edge. As an example, for
the ray shown in Fig. 2(c) we have from (2, 12) that

2
x=2=0 - 2" (2. 14)

TE: N = — (1/2i)e -t me/b)gn. 2
For the ray shown in Fig. 2(d), we have

TM: N = ée—i mx/b) oYz

= {(— Yol
o [(=1)ym/2]ernt, (2,15)
With the main results summarized as above, we will
now state the rules of using the set of new diffraction

coefficients as follows:

(i} The new edge diffraction ray given in (2.1) and
(2. 3) can be used exactly in the same manner as
the conventional Keller's edge diffraction ray
given in (2. 1) and (2. 2). The only difference is
that the new ray has already included the inter-
action between the edge and its neighboring
plates along the shadow boundary at z = 0 (for
all the configurations in Figures 1, 4, 5, and 1.)
Therefore, in using the new rays, a separated
account of such an interaction is no longer need-
ed.

{ii) The Green's function appearing in the diffraction
coefficient in (2. 3) can be found by following the
method outlined in Sec. 2B above [for the three
common configurations shown in Fig, 3, their
explicit forms are given in (2. 11), (3. 7), and (5. 8)
respectively].

?

(i1} In computing the field in a waveguide, the ampli-
tude of a modal field in the waveguide (properly
normalized) is equal to the product of the diffrac-
tion coefficient in (2. 3) and a ray-to-mode con-
version factor, as indicated in (2, 13),

In the next three sections, we will illustrate how the
new system of rays can be applied to solve some
closed-region boundary value problems having edges
of a half-plane type.

3. BIFURCATED WAVEGUIDE

As a first example, let us consider the problem of
scattering by a bifurcated waveguide as shown in

Fig. 4(a). The incident field is a TE, mode from guide
of width q,

B = {— 2ie "™} sin(in/a) (x + be %,

0<x<aeandz >0, (3.1)
where y,; =vun/d)2 — k2, n =1,2,3,- and

d = a, b, c. Note that the factor in{ } in (3. 1) is the
normalization factor so that the ray traveling in the
direction 6 = ¢, = sin"! (In/ka) has a unit amplitude
at the edge of the bifurcated half-plane x = z= 0,

659

The problem at hand is to determine the scattered
field in all three waveguides, namely
33 A {2ie” e} sin(mn/a) (x + b)e et
w
m=1 0<x<gandz >0

P sin(ma/b) (x + D)e T,

0 <x<bandz <0,

2]
E = {2, B,\— 2ie

oo

25 C,42i} sin(mn/c) xe"m<?,
mel b<x<gandz<0. (3.2
It may be noted that the factors in{ } in (3. 2) are
again normalizations so that the ray amplitudes for
the three rays shown in Fig, 4(a) are unity at x = z

= ( in the modal field, Such a normalization will
make N defined in (2, 13) unity in the later computa-
tion.

To apply our ray method, we need first to determine
the transformed Green's function for the auxiliary
problem, namely, the structure shown in Fig. 3(b),
where the bifurcated half-plane has been removed.
Explicitly we are looking for the solution to the trans-
formed wave equation

82 9 _
<§ﬁ ”7)6(9‘,0‘)—‘—5(96) (3.3)
subject to the boundary conditions
elx, ) =0, for x=—bandx=c. (3.4)

A little manipulation leads to

le- o -ofa— O
w
~N

M
(b)
¢>v§
(c)
FI1G.4. Scattering in a bifurcated
waveguide.

J. Math. Phys., Vol. 13, No. 5, May 1972



660 S. W. LEE

€(x=0,0) =[(1 — €29 (1 — e 2%))/[ 2(1 — e-219)]
(3.5)
It follows from (2, 5) that the normalized transformed

Green's function for the parallel plate waveguide is
given by

GW(a) = [(1 — e 218)(1 — e72r¢)]/(1 — e~212), (3. 6)

The superscript in GO (a) is to differentiate it from
the Green's function defined in (2. 10). The “plus
part” of GO (a) as defined in (2. 4) can be found
explicitly, and is given by7?

GO (a) Z\/(l — e(;zi’)e(;[z;;)eich)

X V1 + a/k eile/mib @b e ln (@e)]

(1 + a/iy, )1 + a/iy,.)
n=1 1+ a/iv,,) )

8

X

3.7

1"

B

We will discuss some computational aspects of GU(a)
in Secs. 6 and 7.

Once G (a) is found, we can immediately write down
the solutions for modal coefficients by following the
rules in See, 2, namely, for the field in guide of width
a’
A <—- 2i coszg,, COS3,,, 1

m cosd;, + €08¢,, Gk cos, )Gk cos¢,,,a)>

) [(1— ™0 ey (1 — 2010 mngy)
(3. 8a)
{3. 8Db)

1
X <2ka cosg,,,

¢pa = sin"l (ma/kd), for d=aq,b,c.
Note that the two exponential terms in (3. 8) corres-~
pond to the specularly reflected incoming and outgoing
rays at the ground plane at x = — b, as sketched in
Fig. 4(b). Similarly, we can write down the field in

the two other guides, and the results are

cos¢,, + cos(d,, — 7)

]

(~ 2i cos3d,, cos[3(¢y — M] G~k cosl(dy,, — 1r))> 1
m P cos¢;,) (

¢ cos¢,, + cos(m — ¢),,.)

It is interesting to note that, unlike the field in guide
of width a, there is no specular reflection for the
outgoing rays in the fields in the smaller guides
[Fig. 4(c)].

The solutions given in (3. 8)-(3. 10) derived by our
ray method may be compared with the exact solution
of the bifurcated problem obtainable by either the
residue calculus method”:12 or Wiener-Hopf techni~
que,7 They are identical. This is not surprising in
view of the fact that our ray theory summarized in
Sec. 2 was based on an asymptotic solution for large
kb cse Q (Fig. 1). In the bifurcation problem,  — 0,
and hence our ray method recovers the exact solu-
tion,

Another point worth noting is that, even though our
ray method is designed for computing propagating
modes only, the solutions given (3. 8)—(3. 10) remain
valid when {8, ,, $,4s B ¢, become imaginary (for
evanescent modes), However, such an extension of
our ray method to cover evanescent modes has not
been shown to be true in general.

4, STEP DISCONTINUITY IN WAVEGUIDE

In this section, we will consider a waveguide discon-
tinuity problem which has no known analytical solu-
tion, exact or approximate. This is the step discon-
tinuity shown in Fig. 5, with the wedge angle 8 < /2.

The incident field from the larger waveguide is a
TM;, mode given by

1{; = (2/¢)eia cog(In/a) (x + b)ele’

0<x<aandz>0, (4.1

where ¢ = 2if =0 and g = 1 if / # 0. The problem
is to determine the scattered field,
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<— 2i cosi¢,, cos[z(m — ¢,.)] G~k cos(m — %c”) 1
” Gfly(k cos¢,,) (

i2kbsin ¢ 2
2%b cos¢mb> (e ) -9
2kc cosgy, ) (1 — e 20 %1a), (3.10)
[+
-
o0 N
> A 2o o (T) (x + b)e e,
= me a
" - mo;() m 0<x<a,z>0,
? ’ b)) Cmi cos(mcﬂ) xe¥me®
m=0 = &, b<x<candz<0. (4.2

The field in the triangular region between x =0 and
x = — a is quite complicated. Fortunately, the field
there is generally not of primary interest.

Provided that § is much less than (7/2), the inter~
action between the edge of a wedge and the waveguide
walls is expected to be approximately the same as
that between the edge of a half-plane and the wave-
guide walls. Under such an assumption, we can write
down the solution to the present problem as below.
First, we note that the diffraction coefficient D(8, 6,)
given in (2. 2) is that for a half-plane, and therefore
should be replaced by the corresponding expression
for a wedge, which is given by the well-known expres-~
sion

T . 72
D,(6, 8y) = =B sin @ = p)

K 76— 6) 72 >-1
X (| cO8—5=——F7~ — COS 53—
27 — B 2 — B
727 — 6 — 05) 2 \-1
+ <COS—————2-7-T—_—B—O- — COS#__B) :l,

for TM, (4.3)

where g is the wedge angle. The diffraction coeffici-
ent in (4. 3) no longer has the simple symmetry when
8 (or 6,) is changed to —8 (or — 83) as we had in

(2. 2). Thus, we have to keep track of the five differ-
ent rays shown in Fig. 5 separately. The result for
the reflected field is



RAY THEORY OF DIFFRACTION. 1I1I 661

Am = [Dw(¢ma’ ¢la) + Dw (—- ¢ma’ ¢la)ei2kbsm‘nma

i2kb sin i2kbsin ¢
+ % (6 —¢) +e la

126050 6y g 1

X Dw(—“ ¢1na’ - ¢Ia)e ]

1
x <Gfl)(k cosdvl,,)am(k COS¢ma)>

1
X <2ka coSq,,, >’

where GO(a) is given (3.7). The first, second, third,
and fourth terms in { } (4. 4) correspond to the rays
1-3, 1-4, 2-3, and 2-4, respectively. A numerical
example for A, (reflection coefficient of TEM) is
presented in Fig. 6, We emphasize again that the
result in (4. 4) is approximate. Until there is a more
rigorous way of attacking this problem, we cannot
estimate its accuracy.

(4. 4)

For the special case 8 = 0, the problem becomes that
of the scattering of a 7M wave in a bifurcated wave-
guide, and Dy, in (4. 3) is reduced to D in (2, 2).
Making use of the property of symmetry

(4. 5)

D(6, 65) = sgn(6, 6,)D(1 61, | 651), for TM,

where sgn x =+ 1if x >0 andsgnx =—1if x <0,
we obtain the reflected coefficients for a bifurcated
waveguide (TM) from (4. 4), namely,

<2i sini¢,, sinu,, 1 )
m =~ \"cos¢, + cosd,, GO cose, )Gk cosd,,,)

ol P
¢,

I
|
|
L

f—1

FIG.5. Scattering by a step discontinuity in a

waveguide.
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FIG.6. Reflection coefficient for a TEM mode at the junction of a
step discontinuity in a waveguide,

1 _iZkbsingy,
><(Zka cosqhma) [ —e )

X (1 — etZkbsm%a)]’ if g =0. (4. 6)
This result may be compared with (3. 8) which gives
the reflected coefficients for TE waves in the bifur-
cation problem. It is of particular interest to note
that the factors in [ ] in (3. 8) and (4. 6) due to specu-
lar reflections are the same despite that the specular
reflection coefficient for E, in TE is (— 1), and that
for H, in TM is (+ 1). This is because of

for TE,
for TM,

+ D6, + 6,),

D{6,~ o) :{ —D(8,+ 6), (4.7)

which contributes an extra minus sign for TM wave,

5. PERIODIC ARRAY OF WAVEGUIDES

The other class of closed-region boundary value prob-
lems are those involving periodic structures. Here
we will consider one example of this type, namely,

the scattering of a plane wave (7'M) by an infinite
periodic array of waveguides [Fig. 7(a)]. The

incident field is

Hy(i) _ e-ik(xs'meo+z coseo,) z>0. (5. 1)

The problem is to determine the scattered field
o0 . r
SP‘E Age e 2>,
T o0

Hy=" o ma 2

} 2 B, cos 5 xem®  _p<x<0andz <0,

m=0 (5. 2)

where g, = k sine% + (2pn/b), T, = (B —k?2)1/2, and
Y = [(m7/b)2 — k2]1/2, In order to apply our ray
method in a convenient manner, let us consider the
equivalent problem shown in Fig. 7(b) with an incident
field given by

[e-ikxsine(, + eik(x+2b) sine()]e—ikzcose’ z>0.

Hy = (5.3)

From symmetry consideration, the scattered field
for the problem in Fig, 7(b) may be shown to be

[~e] — . . P -
Hy=32, A e ™" +2F50%p 8", T2 2 50, (5. 4a)

ikbsing mm Ym#
e ] cos(—) xe

Y m=0 “m b
even
o0
bb s
+3 2B, (1 — "5 %) cos(—ngn> xe'm*®
m=1
odd

—~b<x<0andz <0, (5. 4b)
Now we will solve this equivalent problem by our
ray method.

First we need to determine the Green's function,
which is the solution of the transformed wave equa-
tion

2 © . )
( o _ 2>e(x,a) =3 8(x — nb)e "% (5 5)
ox2 n=0
subject to the boundary condition e(x = — b, a) = 0.

A little algebra leads to the resuits
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-2 .
e(x, @) = 1—e 2”& s1nh('n + 1lya inkasiny
2y p sinhya
o erb
- b(y—iksineo)e To(y +ik sinbg)y " (5. 6)
X(l—e 1 —e )
It follows from (2. 5) and (5. 6) that
_ =2yb
(2)(0) 1 e (5. 7)

e—b(y-ik sine))( e—b(y*ik sineo))'

1- 1-—

The factorization of G@ (a) can be found in Ref. 7,
and is given by

@ _ ezzkb
G M) = o b smeg)) o RO sineD)

Ol e—z(ab/w)lnz
\/ E T+ a/if,
1+ a/iy,
LY f+ o/iT)(A + a/il,)" (5. 8)

Once G®@){a) is found, the solution for the problem
shown in Fig. 7(b) can be written down immediately.
For the reflected field, we have

M (Zi sin 26, sinzy, 1 >
4 costy + cosy, G@(k cosfy)GP(k cosy,)

1
x <m) (5.9)

where ¢, = — sin"1(8,/k), 0 < ly,| <7/2. In (5.9)
we note the following:

(i) The specularly reflected rays are not included
because of our representation of the fields in
(5. 3) and (5. 4a), which automatically takes care
of the specular reflection from the ground plane

e ——————
—————————
(a)
A X ‘pp
6o
T z
G

(b)

FIG,7. Scattering by an infinite
array of parallel plates.
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x=—>b.

(ii) Each waveguide mode (except for TEM) consists
of two plane wave [e.g., see (2. 12)]. Hence, the con-
version factor for ray-to-space harmonics is simply
twice that for ray-to-mode. This explains the
absence of the factor 1/2 in the last factor in (5.9).

For the transmitted field, we have

<2i sinzf sin[3(¢;, — 1)) G(—
B, = cosf, + cos(g, — )

k cos(g, — 11)))
G, (e cosf,)

" (m%o—s@)[“ — P, (5.10)

where N, is the normalization factor and may be
found from (5. 4b),

tkbsin g,
(1 +e )

N, = {(1_

The solutions given in (5. 9)-(5. 11) are again identi-
cal to the exact solutions obtainable through the
Wiener—Hopf?13 or the residue calculus method. 71415

m=0,24-°"",

ikb sin G
e 0)’ m___1’3,5’...

(5.11)

6. APPROXIMATE FORMULAS FOR THE GREEN'S
FUNCTION

As illustrated in previous examples, the central step
in calculating our modified ray amplitudes lies in
the computation of the “plus part” of the normalized
transformed Green's function G,(«). In the present
paper, we have given the explicit forms of G,(a) for
three commonly encountered configurations, namely
(i) G, (a) in (2, 11) for a half~plane above a ground
plane [cf, Fig. 4(a) and Fig. 1], (ii) G, (a) in (3.7) for

a half-plane in a parallel-plate waveguide [cf. Fig.
4(b) and Fig. 5], and (iii) G@(a) in (5. 8) for a periodic
array of half-planes [cf. Fig.4(c) and Fig.7]. They
are all expressed in terms of the form of infinite
products. For small and moderate guide dimensions,
the infinite products converge quite rapidly; however,
for large guide dimensions, their computations can be
very laborious. Take (2. 11) as an example; it may be
shown that the normalized truncation error for a N-
term product is less than (ab/7)2/N provided that
[(@b/m)2/N] < 1. Thus for very large (ab/m), the
convergence of the infinite product is slow and the
computation of G, () becomes laborious. In such an
event, it is desirable to use an asymptotic formula
given below.

For large ka, kb, and kc, all the three functions in
(2.11), (3.7), and (5. 8) canbe approximately1® ex-
pressed in terms of a universal function U(s, p)
defined by Weinstein.4 The results are

G, (¢ cost) ~ exp{U(s = V2kb cosf, p =kb/n

— |[kb/u]])},  (6.1a)
GOk cosb) ~ explU(s =V2kb cosb, p = kb/1
— |[kb/7]|) + U(s = VZke cost, p=kc/n
— l[kc/7]|) — U(s = 2ka coss, P =ka/m

— |[ka/m])}, (6. 1b)

G@(k cosb) ~ explU(s = V2&b cosd, p = kb/27
— |[Rb/27]]) — Uls = vEb cosf,
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= [B(1 + sinb,)/27] — |[kb(1 + sinb,)/27]})
— U{s = kb cos8, p = [kb(1 — sinf)/27)
— |[b(1 — sindy)/ 27] )},
for ka, kb, kc > 1

where |{d]| means the largest integer in d. The func-
tion U{s, p) is defined as

(6.1c)

g-inf4 io) e inl2np-s 2/2)

Uls, p) = 21 . f\,_n e¥24t (6. 2)
and may be approximated by
W s> eni3n/d B ilrpn 1
UGs,p) = ) S O(;E)’ (6. 32)
(if) s < 1,
Us, p) = Ln(1 — ei2mw) + ln(l + ﬂ%)
+s <e-w4 ?i eg%" — jjl?;) + 0(s2),  (6.3Db)

(iif) s < 1 and p < 1,
U(s, p) = — 5(In2 + in/2) + In(s + V4up)
— 31— £)0. 824V41p + 0(s2) + O(p) + O(sVp).
(6. 3c)

An application of these asymptotic formulas will be
given in Sec. 7.

For small ka, kb, and kc, the infinite products in
{2.11), (3. 7), and (5. 8) converge very rapidly. As a
matter of fact, if we drop the terms of (Ra/7)2,
(kb/7)2, (kc/7)2 and higher, the following simplified
results may be obtained:

G, (k cosd) ~ 2€'i"/41COS w/ kb exp{[(ékb coss)/7)
x [t —0, 57721 - ln(zn/kb) + im/2)}

x exp|(ikb/m)| 6] |sind]], (6. 4a)

GO (k cos)~ V(1 — ei2kb)(1 — gi2kc)/(] — gi2ka)
V2| cos36]x exp[[(ik cos6)/][b In (a/b)
+ ¢ lnfa/c)]},

Gk cosb)
~ V({1 — ¢i285)J[1 — g ®b A smeg[] — ¢ i#bU 5G]

V2] cos6/2]
1 + (cos8/]cosB,])

x exp|— [(ikb cos8)/7] In2},
for ka, kb ke < 1,

(6. 4b)

(6. 4¢)

Through numerical computations it has been shown!?
that (6. 4b) gives good accuracy for (kb/7) < 1 and

0 = 8, = 60°. We would expect the same accuracy
from (6. 4a) and (6, 4c¢).

7. COMPARISON WITH YFK METHOD

The methodological difference between the YFK
method and our ray method has been discussed in
Sec. 1. Here we will make a quantitative comparison
between their final solutions for a specific problem,
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namely, the bifurcated waveguide discussed in Sec. 3,
Let us concentrate on the self-reflection coefficient
of the TE;, mode due to an incidence from the largest
guide. The solution obtained by our ray method is
given in (3. 8) with m = [, which is also the exact
solution. Under the assumption that

ka, kb, ke > 1, (7.1)

we will compare it with the corresponding solution
obtained by the YFK method for the following cases.

A. TE,, Is Not Close to Cutoff

More precisely, we consider the case with

kd cos¢, > 1, ford=b,c. (7. 2)

Then we may use the formulas in (6. 1b} and (6. 3a)
to expand G{a) appeared in (3. 8), and the result is

A~

. 1
— 2i cos3¢,,C083¢;, (1 —
cosg,, + cosg,,

i2kbsin ¢
e “ay(

1 — eiZkésin ‘352:1)
2ka cosg,,

% et 1 + 1
exp-m COS¢,, COSP, (7.3)

0 eianb ezanc ez2nka 1 -
x 25 (= + — ) + O(w> 1,
w1 \nVonkd  avInkc  wInka k
where O(1/k) means that terms of (kd cos¢,,)"! with
d = b, ¢ and higher have been ignored. If we further

expand the exponential function in (7. 3) and retain its
leading term, we have

A~
(« 2i COSz¢y, COSEYy, (1 — o 2k Py _ ,i2k0sin %))
cosg, + cosd, 2ka cosg,

x {1+ M}, (7.4)
where M may be regarded as the contribution from
the multiple scattering along the shadow boundary at
z =0 (Fig. 4) and is given by

el’lr/4 1 + 1
T VIr (cosqﬁh CO5¢,,
s i2nkb gi2nke
X [Z} ( i +

gi2nka +0 1 (7 5)
= \wmEd  wonke nxlzﬁkaﬂ <E> ‘
The corresponding formula obtained by Yee and
Felsenl® can be also expressed in the form of (7. 4)
except that M is different. Their M is given byl19

ei2ke

+ N
Va&tkc )'

{7.6)
where N is a doubly infinite summation, and is due to
the contributions from the second and higher interac-~
tions along the shadow boundary at z = 0 (Fig. 4). Yee
and Felsenl18 have shown numerically that N in most
cases does not contribute significantly to My¢y,and
therefore its explicit form is not given in (7.6). Now
let us compare (7. 6) with (7. 5). We note that they
agreeonly for the two most dominant terms. A similar
conclusion has been reached by Bowman20 in the

u _ein/4 1 N 1 o i2kD
YER ™y (cosq&th cos%) YATED
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comparison of the YFK solution and the exact solution
for the problem of diffraction by an open-ended wave-
guide (Fig.1 with ka — ©), At this point we should
emphasize the fact that the result given in (7.4) and
(7.5) is not the rigorous asymptotic expansion to the
order of (1/k) of the exact solution in (3.8). This is
because the formula in (6. 1b) itself is an approximate
one,which was obtained in replacing y = Va2 — 22 by
y == ik(1 — a2/2k2) in G(V(a), and therefore the
branch singularities at o = + & disappear. The
absence of the branch singularities in G{9(¢) accounts
for the less accurate results in (7.4) and (7. 5) when
ka (or kb or kc) varies across the values of gr for
g=1,2,3,.... Therefore,the results given in (7.4)
and (7. 5) are not too accurate at the onset of a new
propagating mode in any of the three guides in the
bifurcated waveguide.

B. TE,,Is Close to Cutoff

In such a case, it is convenient to introduce the para-
meter p, through the definition

ka=1n( +p), p<<1. (7.7)
Then it follows that cos¢,, = v21rpa7ka, and ¢,, is close
to (7/2). The expansion of G, V(k cos¢,,) in 66. 1b)
will depend on the parameter

s = V2kd cos¢,, = ZJpakd7l, ford = a,b,c;
when s >> 1 we may use (6. 3a),and when s <1 we
may use (6.3b) or (6.3c). When s assumes a fixed
value, no simplified expression for G, V(& cos¢,,) is
available and one has to use the exact one in (3.7). In
the following let us concentrate on the most interest-
ing case

2, 1,5 K1, (7.8)
Making use of (6.3b) and (6. 3c) in (6.16) gives the
result

G, (k cosgy,) ~ eia/N2mp)1 exp[0. 824(1 — i)

xVaplgblglc), (1.9)

LEE
where
£t0) =N T=em8 (1 [0 o [, B
. @ LiZ2nkd
X <e-m/4 nzjlj:ﬁ;d _ ﬁ)],
b= %—l{%{l |, d=b,c.

Substitution of (7. 9) into (3. 8) leads to the following
expression for the self-reflection coefficient for in-
cident TE;, mode:

A, ~ (—1) exp[— 0. 824(1 — §)V4np,]
x [1 — ei2kb sing, , /g(b)g(c)]?,

which is valid under the conditions in (7. 8) and (7.1).
The YFK method does not seem able to give a satis-
factory solution for this case.

8. CONCLUSION

In addition to the classical half-plane problem, there
are only three types of problems in the edge diffrac-
tion theory that can be solved exactly. They are: (i)
the open-end waveguide (Fig.1 with @ = b), (ii) the
bifurcated waveguide (Fig.4),and (iii) the periodic
array of waveguides (Fig. 7). The known methods of
attacking these problems are all based on the pro-
perty of analytical functions in the complex plane
(e.g.,the Wiener—Hopf or the residue calculus techni-
ques). They involve sophisticated mathematics and
generally are not easy to apply. In the paper we have
presented a recipe based on a ray-tracing procedure
for attacking these problems. Following our recipe,
we can write down the exact solutions almost by in-
spection. More important,in certain problems where
the sophisticated analytical methods cannot be applied,
our ray method often provides a useful approximate
solution,
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In this paper an attempt is made to define the class of equivalent reference frames in special relativity in terms
of a purely kinematical characterization of the notion of free material point and using homogeneity of space
and time, isotropy of space,and unidirectional time flow. The problem of finding the possible forms of the re-

lativity group and the significance of a “space-time homogeneity axiom” which was used in previous papers

are discussed.

I. INTRODUCTION

In some recent papers?! the problem of the derivation
of the Poincaré and Galilei groups from the basic
principles of (i) relativity, (ii) homogeneity of space
and time, and (iii) isotropy of space has been investi-
gated extensively. In a sketchy way,the line of the
argument is the following. First,by a suitable “formu-
lation of the principle of space~-time homogene-

ity Ua.1e).2 gne ensures that the space~time coordin-
ate transformation between two equivalent frames of
reference is affine. Secondly, one shows that the
orthochronous Poincaré transformations, with the
Galilei ones as the usual limiting case, are the only
ones which are compatible with the principle of relati-
vity, the isotropy of space, the synchronization of
clocks in each frame at different space points, the
existence of a unidirectional time flow, and the choice
in all frames of common length and time standards.

Yet in the abovementioned papers, an operationally
satisfactory, at least in principle, characterization of
the class of equivalent frames is lacking. The usual
characterization of the equivalent frames in special
relativity is intrinsically a dynamical one, since it is
based on the law of inertia, which is a statement about
the properties of the motion of the center of mass of
a free material body, being defined as one which is
not acted upon by external forces.3 Apart from the
difficulties in principle which such a definition of a
free body may encounter, we believe that in the search
of the relativity groups one should try to rely on
kinematical elements and on some generally recogni-
zed uniformity properties of space and time relative
to the observer, rather than on dynamical (though very
simple) laws, like the law of inertia. It is only after
the possible relativity groups have been found follow-
ing this line,that the request of invariance of the
(known) dynamical laws should enable one to choose
the correct transformation group among the various
possibilities. In other words, the knowledge of the
dynamics should enter only at the stage of selecting
the correct group among the different solutions which
have been found on a kinematical basis and on the
ground of some minimal invariance properties which
are generally accepted.

In this paper we stick to this line of approach by de-
fining a class of frames (which we call pre-inertial)
in terms of a puvely kinematical charactevization of
the notion of a free matevial point, based on simple
conceptual experiments of a type often used in the
theory of relativity. At the same time, the principle
of homogeneity of space and time will be formulated
by stressing its significance as regards the space
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and time of the given observer,in contrast with the
absolute nature of the space-time homogeneity axiom
of Refs. 1(a) and 1(e) (to be labeled T from now on),
which appears therefore to be an essentially independ-
ent and much stronger condition both from the physi-
cal as well as from the mathematical point of view.

Without the latter axiom,the probiem of the linearity
of the transformations and, consequently, of the Poin-
caré and the Galilei groups being the only solutions,
is still open and requires further investigation.

In Sec.II we define the class of pre-inertial frames

of reference in terms of our kinematical characteri-
zation of a free material point and requiring them to
satisfy the conditions of space and time homogeneity,
isotropy of space and unidirectional flow of time, and
we show that this enables us to obtain a complete
characterization of the transformations among frames
which are relatively at rest.

In Sec. I we tentatively formulate a relativity princi-
ple for the class of pre-inertial frames and we state
and briefly comment upon the (apparently difficult)
mathematical problem that one has to solve in order
to find the possible forms of the corresponding re-
lativity group. Then we give a very concise but com-
plete review of the way the Poincaré and Galilei
groups can be univocally deduced if use is made of
axiom T as an additional requirement. Finally,we
briefly discuss the relation of axiom T to the usual
characterization of a free material point and to the
property of homogeneity of space and time.

In the following, greek indices p, v, - - - run from one
to four,latin indices 7,7, - from one to three. A
linear transformation x = Mx (respectively, an affine
transformation x = Mx + a) of R” will currently be
identified to the corresponding matrix M € GL(n,R)
[respectively,to the corresponding vector-matrix
pair (a,M),a € R*, M < GL{n,R)]. A matrix

G € GL(n,R) will often be denoted by the family of
its matrix elements G = (G,, ) and an n-vector x by
its components (x,). The usual notation x is used for
a 3-vector (x;). We call a one-to-one map of a set
onto itself a permutation of the set.

O. THE CLASS OF PRE-INERTIAL FRAMES
REFERENCE

First of all, let us specify what we mean by the state-
ment that the object A is a copy of the object B. An
observer will say that A is a copy of B if, after re-
ducing to rest both A and B in a properly smooth way,
and putting A near B,after a series of comparisons
he will judge that A and B are identical. In particular,
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from a purely geometrical point of view, he will say
that the two objects are congruent. We shall assume
that the conclusion that A is (or is not) a copy of B is
independent of the procedure by which A and B are
put nearby, and of the observer. We suppose each
observer to distinguish naturally between space and
time and assume that he chooses a reference frame
by which he is able to characterize each event by
four real numbers, three space coordinates x,(i = 1,
2,3),and a time coordinate {, Thus a reference frame
(for a given observer) will consist essentially of a
set of measuring rods or equivalent devices for the
assignment of the location of events in space and of a
get of clocks, each of which is a copy of the others,
located at all space points, for the assignment of the
times at which events happen. For definiteness, we
shall assume without loss of generality that the co~
ordinates are chosen in such a way that the domain of
coordinate sets of all possible events is R4 and that
two distinct events have distinct coordinate sets.

We define a frame S’ to be at rest relative to a given
frame S if any object which is at rest in S is at rest
in S* as well. This is equivalent to the statement that
the coordinate transformation functions from S to
S'xy=t,x4=1",

xﬁ :fp(x1,x2,x39x4)’ “‘:1,2)3)4’ (1)
must map a straight line which is parallel to the time
axis onto a straight line which is parallel to the time
axis and therefore are of the form

(a) x;;:fi(xlyxzvxg)’ i=1,2,3, (2)
(b) x§:f4(x1’xz’x3:x4)-

Let
X, = d)p(x’l,x’z,xg,x{;), p=1,23,4, (3)

be the inverse functions of (1) and suppose that there
exists a 3-vector ¥ = (%,,%,,%,) such that ¥ =
B(F1,%5,%5,2%) #¥ @) = GG, %y, %q,22)) for some
x{D and x{®. Then transformation (1) would map the
straight lines ¥ = %1) and X = ¥® onto the same

straight line ¥ = ¥, which contradicts the fact that (1)
is one to one. Hence the functions ¢; depend on xj,
x4,and x5 but not on xj, so that S is at rest relative
to §’ and we can simply speak of “frames which are
relatively at rest.” Using similar arguments and
observing that f is a permutation of R4, one easily
proyes thatfis a permutation of R3 and that ¢ = f-1
= (/)1

We now postulate on experimental grounds the exist-
ence of a nonvoid class © = {O} of observers, with the
class § = {J} of their corresponding frames J <> O
= O, which we call pre-inertial frames of reference,
such that

(A) with respect to each observer of the class O,
space appears to be Euclidean and the localiza-
tion of events in space is given in terms of ortho-
gonal, say, right-handed triads and

(B) the clocks of each frame J € g can be synchroni-
zed in such a way that the following properties
hold.
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I: Let J € g and let O, be the observer which
sets up J. Then O, has copies of an appar-~
atus (this might be thought for instance of
being an ideal gun) which,being at rest in
J,is able to start a material point such that

(a) the trajectory of the point is a straight
line;

(b) if a second copy of the apparatus starts
a second material point from the position
in which the first point is at a certain in~
stant of its motion, at the same instant and
in the same direction, afterwards the two
points proceed together;

(c) the law of motion ¢ — %(f) of the point
is a continuous one~-to-one function of .4

II(a): If J € J,space and time are homogeneous

according to 0,, meaning that

(i) for any given apparatus A, at rest
in J and geometrically characterized
by the set of spatial coordinates {x}
and for any given 3-vector 4, O, can
in prineiple build a copy Ay of A,
which is geometrically characterized
‘by the set of coordinates {55 + E};

(ii) for any given experiment E, per-
formed with 4; and geometrically
characterized by the set of space~
time coordinates {x {} and for any
given 4-vector {g, t,}, O 7 can in princi-
ple perform with A2 a corresponding
copy experiment Ez ,0 geometrically
characterized by the set of coordinates
Z+a, b+t

II(b): If J € ¢, space is isotropic according to
O,;, meaning that

(i) for any given apparatus A, at rest
in J and geometrically characterized
by the set of spatial coordinates {x}
and for any given proper rotation @,
O, can in principle build a copy 4, of
A, which is geometrically characteri-
zed by the set of coordinates {Qx};

(i) for any given E, performed with
A, and geometrically characterized
by the set of space~time coordinates
{%, 1}, 0, can in principle perform
with A, a corresponding copy experi-
ment £, geometrically characterized
by the set of coordinates {Qx, f}.

III: Let J and J' be two frames of § which are
supposed to be relatively at rest so that
the transformation _from J to J’ has the
form (2). Then,if x is any 3-vector and
t; and £, any two distinct time instants, we
assume that

Fal% 15) — f(&, 1)
a2 M7l . @)

ty—t,

We shall now make several comments on points I-III.

Point I gives the kinematical definition of a “free

point.” Indeed, with the help of II(a), one can show that
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the motion of such points is uniform. In order to
prove this, let us consider a “free point” fired at t = 0
and a second point fired at { = {; =0, in the conditions
described in I(b) relative to the first point. If = x(¢),
t=0,and ¢t > %'(t), ¢t =t,,are the respective laws of
motion of the two points, we have,by II(a),

(t+ ty) = x(t) + X(t) —%(0), t;=t=0. (5

If t, = t;,by first setting { = 0 in (5) and then ¢t = £,
— ty,we get

X(ty) — X(t) = Xty — t;) — x(0), t, =¢; =0.
(6)
On the other hand, by I(b),

X(ty) — %) = X(ty) — x(t;), tp=t,=0.  (7)

Combining (6) and (7) we obtain

X(ty) — () = Xty — ;) — %(0), o=t =0, (8)

The function %(¢) has been defined for ¢ = 0. However,
it can be continued also for — T < ¢ <0, with the aid
of a third material point fired at £ = — T in the direc-
tion of 9?(1‘2) — %(0), t{, > 0,from a position such that
at / = 0 it is in #(0). Since T is arbitrary, we can
define a fictitious motion X(f) with ¢ € (— ®, + ©),
satisfying (8). Defining 2(t) = x({t) — %(0), (8) gives

2lts) — &(ty) = &lly — 1),

On the other hand, by 1(b) and I(a), £(T) = %(T) — %(0)
= x(0) — x(— T) = — g{— T),namely

ty=t; = 0. (9)

g==—glt), te(—wn+w), (10)
Combining (9) and (10) we get

gty + g =gt + 1), tt'€(—wo,+0. (11)
From (11) and I{c) one deduces in a standard way?5
that g(f) is a linear function of {, whereby

X(t) = vt + %(0), v #0. (12)

One recognizes immediately that, due to II, the abso-
lute value of the velocity 2 does not depend on its
direction nor on the point in space and on the instant
in time at which the “free point” was fired.

Now let P, and P, be two distinct points in space and
let two “free points” be fired respectively at P, in the
direction of P, at the time ¢ = 0 as given by the clock
in P, and at P, in the direction of P, at the time { =0
as given by clock at P,. The corresponding laws of
motion are

i) =P, + a(P,— P)t (13)
and

() =P, + (1—at)(P,— P,). (14)
Equating (13) to (14) gives

~(1 /1 Py + Py

)=+ -2

showing that the two bullets collide at the midpoint of

the straight line segment joining P; to P,. We thus
see that the synchronization of the clocks in a given
frame, which is implied by conditions I and II is the
standard one.®

We stress the fact that conditions I-III do not imply
in general that the observer O, should see the “free
points” fired by O, as uniformly moving along
straight lines. Indeed, the guns at rest in J are not
in general at rest in J’.

Points II(ai) and II(bi), together with the definition of
a copy,imply that objects do not deform when they
are moved in space. This is in fact a translation of
Agsumption (a) that space appears to each observer
to be Euclidean.

It follows from II{a) and II(b) that for every J € J and
for an arbitrary 4-vector a = (q, {;) and an arbitrary
proper rotation @, one can build a space rotated,
space~—time translated frame J(, oy such that

Raq)= % + a,
=t + tO' (16)

ta.q)

Since Ji, oy and J are relatively at rest, their corres-
ponding observers can use the same guns and then it
is immediately seen that J, 4, also belongs to J. Actu-
ally, the family {J¢, o)}z ept @ e so(3) €Xhausts the set
of frames of g which are at rest relative to J. In
order to prove this, let J’ be any frame of g which is
at rest relative to J Guns at rest in J are at rest in
J’as well, which means that a material point which is
free in J is seen to be free also in J’. Hence, since
any straight line in space can be the trajectory of a
free point due to II, the space part

x) = filxy,%9,%5), =123, 17
of transformation (2) must map a straight line onto a
straight line, its inverse having the same property.
Then, using the fact that the only (algebraic!) auto-
morphism of the real field is the identity (Appendix
A),an almost straightforward application of the funda-
mental theorem of projective geometry? (Appendix
B) shows that (17) is an affine permutation of R3:

3

xi= 2G,% ta;, i=1,23, (18)
=1

Now let A and B be two copies of an object, at rest in
J and J’. Due to II(ai) and II(bi) they appear both to
J and to J’ as rotated and translated with respect to
each other. In other words, transformation (18) must
map figures which are relatively rotated and trans-
lated onto figures which are relatively rotated and
translated. Therefore,by a trivial generalization of
Lemma 2 of Ref.1(d),we conclude that (18) must be
of the form
3
x,,::Ele(ka) + a;, i= 192y3, (19)
j=
where 2> 0 and {Qi]} € SO(3) (due to the choice of
right-handed triads). Clearly,if O; and O, both
choose the same rule as unit of length, k has to be
taken equal to one.

As to relation (2b),let P, and P, be any two distinct
space points and let two material points be fired from
P, to P, and, respectively, from P, to P, simultane-
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ously at time ¢ with respect to the clocks of J. Due
to (15), the two bullets as seen by O, will collide at

the midpoint %), =%(3c’},1 + ;Pz) of the straight line seg-
ment joining fpl to ¥ p,~ But since

(i)' = @y + & = 1y, + @, + 3}

= %(J?é‘ + ’?.l”z) =}£p
the collision will take place at the midpoint,as seen
by O, as well, who therefore will also judge that the
two bullets were fired simultaneously. Therefore

f4(3EP1,t) =t = tp = f4(xp ,t), which, by the arbitrari-
ness of P,,P,,and ¢,implies that

1= f4%, 1) = £(0).

Now let £ = % (f) = @ + tb be the law of motion of a
“free point” relative to J. We have x'(t') = Qx(t) +
c=(Qd + ¢) + H{Qb) = a’ + f31(t')(@d) and due to the
uniformity of the motion relative to J’,f;1(t') = at’ +
B, a= 0. Then,if O; and Oy, choose the same time
standard, o has to be chosen equal to one because of
(4) and we have ¢’ =t + ¢,.

(20)

Ul. THE PROBLEM OF DERIVING THE RELA -
TIVITY GROUP

Among the properties which define the class g of
pre-inertial reference frames,II is clearly a state~
ment of invariance of the description of physical
phenomena within a maximal subclass of frames of
g which are relatively at rest. We shall now tentati-
vely formulate a relalivily principle for the whole
class g by assuming:

Axiom P: the frames of § ave equivalent as ve-
gards the description of natural phenomena.

Generally speaking, this has to be intended as mean-
ing that if two copies of a physical system have been
given subjectively identical initial conditions in the
respective laboratories of two frames of J,the pro-
babilities for equal outcomes of corresponding sub-
jectively identical experiments performed at equal
later times on the copies in the respective frames
are the same.8

A consequence of Axiom P is that the set £ of trans-
formations (1) relative to pairs of elements of § is

a subgroup of the group @ of permutations of R4, In-
deed, it is first of all evident that £ contains the iden~
tity map and that f € £ implies f~1 € £. Now,let g,

h € £ and suppose that, with obvious notations,J’ =
g(J) and J’ = h(J), with J,J’,J,J’ € J. Due to P, there
exists in g a frame J’’ which bears the same relation
to J’ as J' to J: J'’ = r{J’). Therefore,J’’ = h(gJ)) =
hg(J) and the composite transformation also belongs
to £.

£ might be termed the space-time relativity group.

We now define X to be the subset of ® whose elements
are the permutations of R4 having the form (2). In
other words,

X = {f|f € ®;f maps a straight line which is
parallel to the x, axis onto a straight line
which is also parallel to the x, axis}. (21)
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Using the same argument as the one following formula
(2), one proves that X is a subgroup of ®. If g € £NK,
it is a transformation connecting two frames of g
which are relatively at rest and vice versa. On the
other hand, we have seen in Sec.II that the group of
transformations relative to pairs of frames belonging
to a maximal subclass of frames of g which are rela-
tively at rest is the semidirect product ® = R4 g C of
the transformations of the form (16), where a = (a, to)
€ R4 and

e={CIC e GL(4,R);C;;=C,;=0,i=1,2,3;

Caq=1;(C;) € SOB}.  (22)

Therefore, £ must satisfy

ENK=QR (23)

and the problem of finding the possible forms of the
relativity group reduces to that of determining the
family § = {€} of all solutions of Eq.(23).

The task of finding § seems to be a rather difficult
one. We observe,however, that a particular subfamily
of F is {®\} ¢ .+ o} Where

@) if 0<a< + w, @, is the proper orthochronous
Poincaré group corresponding to an invariant velocity
equal to X1/2 namely

@, ={(a,L)|(a,L) € ®;(a,L)x = Lx + a;

ae€ R4;L € GL(4,R); LTg(A)L = g(}); (24)

g(\) = diag(~ A,— A,— A, 1);detL = 1,L,, = 1},

(ii) @, is the proper orthochronous inhomogeneous
Galilei group, namely

‘pO = {(G,G)l (a’G) c (P;(a,G)x =Gx +ta;a € R4,'
Gc GL(4,R);G4,' =0,i= 1,2,3;G44 = 1;

(G,p) € SO(3)}, (25)
and
(iil) @, = Q. (26)

The following question is therefore at order. Is {®,}

a proper subfamily of ¥ ? In other words, are there
solutions of Eq.(23) which do not belong to the family
{®,} ? Our feeling is that it might well be that the
answer to this question is negative. On the other hand,
if it will eventually turn out that other (perhaps not
too pathological) solutions exist, it would be interest-
ing to look whether they can be given a physical inter-
pretation. Alternatively,one might look in this case
for a further axiom to be imposed on the class g,
which should provide a necessary condition to rule out
just these extra solutions,and try to interpret this
axiom physically. Since we do not have at hand the
solution of the problem, we shall confine ourselves to
a review of the steps of the proof [which can be found
in detail in Refs. 1(a) and 1(d)] that the “space-time
homogeneity axiom” of Refs.1(a) and 2 provides a suffi-
cient condition for the family of possible relativity
groups to be exactly {(P,\} The axiom can be stated as
follows:

Axiom T: Let J,J’ € g and let x = x' = f(x) be the
coordinate transformation from J to J’, If b is an
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arbitrary 4-vector, let Ji;) denote the frame space-
time translated by b with respect to J:

x®O=x—p. (27)
Then J 4, is seen also by J’ as being space-time
translated with respect to J,namely a 4-vector &’
exists such that

Fx®) = f(x) — b". (28)

We observe that for any J € ¢,the frame J, ., de-
fined by (16) satisfies T.

Using Axiom T and assuming f to be continuous, one
can prove in a standard way? that f has to be an affine
permutation of R4:

fix—> Mx+ a. (29)
Thus £ is a subgroup of the affine group R4 & GL(4,R)
of R4 and has the semidirect product structure £ =
R4 @ M, where GL{4,R) 2 M 2 € and M is the group
of transformations among the elements of a maximal
class of frames of J having the same space-time
origin. Within one such class, the group of transfor-
mations among frames which are relatively at rest
is €, so that Axiom T allows us to replace Eq.(23) by
the equation

MN K =C, (30)
where X is the subgroup of GL(4,R) whose elements
are the transformations which map any straight line
parallel to the x, axis onto a straight line again par-
allel to the x, axis,namely

3% ={H|H € GL(4,R);H;, = 0,i=1,2,3}. (31)
The entire family of solutions of Eq.(30) has been
determinedin Ref. 1(d){ see also Ref.1(c)] andis given
by the following:

Theorem: Let & denote the family of subgroups of
GL(4,R) defined by M e ¢ iff M NI =€, Thend =
{S:h e ey Where @) if 0<A < + 0, G, ={L|L e

GL(4,R),(0,L) € ®,},5)S, = {G|G € GL(4,R); (0, G)
€@y and G, =€,

Since @, = R4® §,, A € [0,+ «],this completes the
proof that the addition of axiom T to conditions I-III
of Sec.II is sufficient to restrict the choice of the pos-
?ibie relativity groups to the elements of the family
@ .

We conclude with some observations regarding the
significance of Axiom T and its relation to the pro-
perties of free material points and to the homogeneity
of space and time. Axiom T is essentially a statement
that space~-time translations have an absolute charac-
ter for the frames of the class J,and this can be seen
to be equivalent to the statement that the notion of a
free point is likewise absolute for these frames. In-
deed, Axiom T implies that the elements of £ are
affine transformations, so that for any J,J’ € ¢, obser-
ver Oy sees the “free points” fired by O; as uniformly
moving along straight lines. Conversely, suppose that
the latter circumstance is true, and assume that the
domain A of the possible velocity vectors ¥ of free
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points in one frame of J contains a spherical neigh-
borhood N of the origin (of course, free points whose
velocities have different absolute values are fired by
different guns). Then,the world lines of free material
points. going through a given space~time point x with
respect to a given frame J € £ are straight lines
whose union contains the inner part of a circular cone
C,(N) with vertex in x and with axis the “rest” world
line through x, and whose opening depends on N but
can be taken to be x independent. Any straight line
contained in one such cone is mapped by an element of
£ onto a straight line. Then it is easy to show that if
f € £ and 7 is a plane such that one {and thus all) of
its points x is the intersection of two straight lines
lying in 7 and contained in C,(N),f(7) is a plane.10
Therefore, since any straight line can be obtained as
the intersection of two such planes 7 and 7', f (together
with its inverse) maps a straight line onto a straight
line; hence by the fundamental theorem of projective
geometry (Appendix B),7 it is an affine permutation
of R4, Axiom T is thus satisfied by the frames of £.

The absolute character of translations and of the
notion of free point was already guaranteed in the
class of frames at rest relative to each other. Axiom
T extends this property to the whole class . Ina
sense, it replaces the law of inertia.

As regards the relation of Axiom T to space—time
homogeneity, it is clear that the former is not a state-
ment of the homogeneity of space and time relative to
a particular observer,but rather a postulate on the
absolute character that space—time translations
should have for the class of equivalent observers. It
appears therefore to be an essentially independent
and much stronger condition than the simple require~
ment of homogeneity of space and time relative to a
given observer, as described in condition II(a).
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APPENDIX A

Let f be an automorphism of the field R of real num-
bers,namely f is a permutation of R satisfying

JFla+B)=f(a) +f(p) (A1)
and

f(ag) = f(a)f(8), (A2)
Va, B R.
Taking x =y = 0 in (A1) we get

f@=0 (A3)
from which, setting 8 = — ain the same equation,

f(=a)=—f(a). (A4)
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If @ is the subfield of rational numbers,from (Al) we
get in a standard way using induction5 that

fra)=rf(a),
Taking g = 1,(A2) gives f(a) = f{a)f(1) and by (A3)

and since f is a permutation, f(1) = 1 whence, setting
a=1in (A5),

Vae Rand Vr € Q. (A5)

f@)=7r, VreQq. (A6)
If @ > B we have,using (A4), (Al),and (A2), f(a) —
7@ =fla~8) = fl(a— p)1/2(a— p)172] = { f{(a—
B2} >0,

namely o> 8 = f(a)> (8).. (A7)

Let @ € R, o0 € @,and suppose that f (o) > a. Then
there exists » € @ such that f (o) > » > a. From » > o,
(A6),and (A7), we get » > f(a) which is a contradiction,
Similarly, f(a) < o also leads to a contradiction. Thus,
combining with (A6),we get f(a) = a,Va € R.

APPENDIX B

Let V be a finite-dimensional vector space over a
commutative field K.11 We write V* = V — {0} and
K* = K — {0}, where 0 and 0 are the zeros (origins)
of V and of K, respectively. The relation on V¥,

xRy <> x =2y for some X € K*, (B1)
is an equivalence relation and the quotient set P(V) =
V*/R is called the projective space associated to V.
As a subset of V,an equivalence class is the differ-
ence set {Aa}, c x«, @ € V*,of a straight line through
the origin and the origin 1tse1f As a point of P(V),
the equivalence class {Aa}, g+ will be denoted by P,
Three distinct points p,,p,,and p, of P(V) are said to
be collinear if there exist A, p e °K* such that ¢ = A a
+ ub. If Vand V’ are two vector spaces over the
fields K and K’, respectively,and I is an isomorphism
of K onto K’',a map ¢of V into V' is said to be semi~
linear (relative to I) if

plax + gy) = H{a)p(x) + 1(B)o(y);
ofpcKandx,y €V,

(B2)

Theorem (lhe fundamenial theovem of projective
geomeltryT12): Let V and V’ be two finite-dimension-
al vector spaces of equal dimension n = 3 over the
commutative fields K and K’,respectively,and let
P(V)and P(V")be the corresponding projective spaces.
Let ¢ be a one-to-one map of P(V) onto P(V’) such
that, whenever p,, p,,p, € P(V) are collinear, o (p,),

o (p,), 0(p,) are collinear. Then there exists a unique
isomorphism 7 of K onto K’ and a one-to-one semi-
linear map ¢ of V onto V’ (relative to I) such that ¢
induces 0 on P(V) in the sense that o(p,) = {p(Aa)}, cx+
a ¢ V*. If Y is another similinear map of V onto V'
having the same property,then Y (x) = ¢(ux), where p
is a given element of K * and by letting p take all
values in K* we obtain all of these maps.
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Now let f be a permutation of R” (% = 3) such that f
and f-1 map a straight line onto a straight line. Let

7 be a plane and let [, and [, be two distinct inter-
secting straight lines belonging to 7. By hypothesis,
f(1,) and f(I,) are two distinct intersecting straight
lines which define a plane #’. The image f(P) of a
point P of 7 which belongs to I, U I, lies in 7’ by
definition, Let a point @ belong to m and @ ¢ [, U

l5. Draw a straight line [, through @ and intersect-
ing both !, and l,. Then,f(ly) is a straight line inter-
sectmgf(ll) andj(lz) hence [ymg in 7’. Therefore
f(Q) € 7’ and f(7) C n’. Since f~1 also maps a straight
line onto a straight line by hypothesis, we get simi-
larly that f(m) 2 7’ so that f(r) = 7’ and f maps a
plane onto a plane. Then,if g : R* = R” is defined as

&%) = flx) — £(0), (B3)

it induces a permutation ¢ of P(R”) which maps tri-
plets of collinear points onto triplets of collinear
points. Therefore, since R has only the identity auto-
morphism (Appendix A),by the fundamental theorem
of projective geometry, there exists a nonsingular
linear transformation M of R* onto itself inducing

0. The map

X € R=,

f: Ml ° g (B4)
is a permutation of R” which maps a straight line onto
a straight line and which maps a straight line through
the origin onto itself. We prove that

f TXTINX (B5)
for some X € R*, Indeed, let 7 be a straight line which
does not go through the origin and let s, and s, be

two distinct straight lines through the origin both of
which intersect (s, in P, and s, in P,, say). Since

ﬁsl) = s, and ﬂsz) = S,,we have f(Pl) € sy and
f(P5) € sy, hence the straight line ' = f(r) intersects

s, in f(Pl) and s, in f(Pz),thus lying in the plane con-
taining s,,s,,and », We distinguish two cases.

Case 1: No matter how we choose 7,f (r) is par-
allel to . In this case,we prove (B5). Indeed, let y
be an arbitrary point of Rn*_ Then, since f maps a
straight line through the origin onto itself, we have
F(» =r(y)y, My) € R*. Let z #y be any other point
of R#* and take 7 to be the straight line through z and
y. Since 7' is parallel to v we obviously have A(y) =
A(2),namely A(y) does not depend on y.

Case 2: There is a least one r such that r’ is not
parallel to . Let s be the straight line through the
origin which is parallel to »’. It intersects r in a
point . Since s is mapped by f onto itself we must
have @ = f(@) =#'Ns. But 7’ Ns = & and we have
a contradiction. From (B3), (B4),and (B5) it follows
that

fix>MOx) + f(0),

namely f is an affine permutation of R”.
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The generalized covariant Dirac equation for a certain five-dimensional universe is studied. If a torsion inva-
riant is included in the free Lagrangian, it is shown that particlelike stable solutions exist having definite posi-
tive rest energy, spin, and corresponding antiparticles, The treatment is throughout classical.

I. INTRODUCTION

We show in this article the existence of stable par-
ticlelike classical elementary excitations in a model
universe. The excitations are of the spinorial type
and the results very similar to those of a model pre-
viously proposed by one of the authors! in a paper to
be referred as I,

Our starting point combines two different considera-
tions: on the one hand, if we are to find particlelike
objects with a certain mass in some universe without
introducing phenomenological parameters, we need to
fix some scale or elementary length, There are two
ways of doing this;one related to the microstructure
of space-time, the other to its macrostructure, (Per-
haps a third possibility would be to combine both.)
We will assume the latter and consider a universe
which might intuitively be called a thin three-dimen-
sional sheet. That is,besides the ordinary three
dimensions and time, a new dimension is postulated
such that space is very narrow across. Its width will
provide the necessary scale of length.

Our second basic consideration is the requirement
of as much symmetry as can be provided for the
particlelike object. The reason for this is simple,
Ordinary symmetry under four-translations and
Lorentz rotations is known to be a necessary but
apparently not sufficient condition for a satisfactory
classical theory of elementary particles. Invariance
under generalized point dependent transformations
is clearly stronger. It also provides in some cases
a self-interaction which happens to be essential in
order to have a normalizable theory. This is the
kind of symmetry we will consider.

Coming to our first point, it is useful to analyze a
massless boson field in the five-dimensional model
universe, subject to the boundary conditions imposed
by the two parallel planes x5 = + a. (No space is

supposed to exist outside these planes. Isotropy is
assumed inside for the five-dimensional continuum,
whenever boundaries are not reached.) (Similarly to
what happens in any vibrating medium with bound-
aries, no flow of current can escape through any area
of the boundary. This implies that the current com-
ponent perpendicular to the boundary should vanish
at each point of the boundary.)

It is clear that a mass term and a mass spectrum
can be related to the existence of the bounded fifth
dimension,

If the Klein-Gordon equation without a mass is
written

3,040 =0 (1)

with the metric g,,(1, —1, —1, —1, —1) and, in
order to take into account the boundary conditions, ¢
is supposed to factorize as

A \sin(um/a)x5

¢= cos[(n + 3)7/a)x5 %4’(’?’”’ 2

where » is an integer,A a constant, and a the half-
width of the universe observers unable to realize
the existence of a very narrow a would tend to con-
sider Eq. (1) an ordinary Klein-Gordon equation with
a mass term
O¢ + m2¢ =0, m2=n212/a2, (0 + 3)202/a2. (3)
As is seen one also finds a mass spectrum which is,
of course, trivial. For the nonlinear equations which

will be found later the mass spectrum cannot be cal-
culated analytically.

A similar approach can be followed for spinorial
excitations in the five-dimensional space. However,
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I. INTRODUCTION

We show in this article the existence of stable par-
ticlelike classical elementary excitations in a model
universe. The excitations are of the spinorial type
and the results very similar to those of a model pre-
viously proposed by one of the authors! in a paper to
be referred as I,

Our starting point combines two different considera-
tions: on the one hand, if we are to find particlelike
objects with a certain mass in some universe without
introducing phenomenological parameters, we need to
fix some scale or elementary length, There are two
ways of doing this;one related to the microstructure
of space-time, the other to its macrostructure, (Per-
haps a third possibility would be to combine both.)
We will assume the latter and consider a universe
which might intuitively be called a thin three-dimen-
sional sheet. That is,besides the ordinary three
dimensions and time, a new dimension is postulated
such that space is very narrow across. Its width will
provide the necessary scale of length.

Our second basic consideration is the requirement
of as much symmetry as can be provided for the
particlelike object. The reason for this is simple,
Ordinary symmetry under four-translations and
Lorentz rotations is known to be a necessary but
apparently not sufficient condition for a satisfactory
classical theory of elementary particles. Invariance
under generalized point dependent transformations
is clearly stronger. It also provides in some cases
a self-interaction which happens to be essential in
order to have a normalizable theory. This is the
kind of symmetry we will consider.

Coming to our first point, it is useful to analyze a
massless boson field in the five-dimensional model
universe, subject to the boundary conditions imposed
by the two parallel planes x5 = + a. (No space is

supposed to exist outside these planes. Isotropy is
assumed inside for the five-dimensional continuum,
whenever boundaries are not reached.) (Similarly to
what happens in any vibrating medium with bound-
aries, no flow of current can escape through any area
of the boundary. This implies that the current com-
ponent perpendicular to the boundary should vanish
at each point of the boundary.)

It is clear that a mass term and a mass spectrum
can be related to the existence of the bounded fifth
dimension,

If the Klein-Gordon equation without a mass is
written

3,040 =0 (1)

with the metric g,,(1, —1, —1, —1, —1) and, in
order to take into account the boundary conditions, ¢
is supposed to factorize as

A \sin(um/a)x5

¢= cos[(n + 3)7/a)x5 %4’(’?’”’ 2

where » is an integer,A a constant, and a the half-
width of the universe observers unable to realize
the existence of a very narrow a would tend to con-
sider Eq. (1) an ordinary Klein-Gordon equation with
a mass term
O¢ + m2¢ =0, m2=n212/a2, (0 + 3)202/a2. (3)
As is seen one also finds a mass spectrum which is,
of course, trivial. For the nonlinear equations which

will be found later the mass spectrum cannot be cal-
culated analytically.

A similar approach can be followed for spinorial
excitations in the five-dimensional space. However,
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both in the Klein-Gordon and in the Dirac cases, these
linear Lorentz covariant equations have no satisfac-
tory solutions from a classical point of view. We
mean by satisfactory a theory having stable regular
solutions with finite positive energy at rest.

Let us then introduce our stronger symmetry re-
quirements and demand covariance under generalized
(point dependent) Poincaré transformations. Our
purpose is to study with this point of view the five-
dimensional massless Dirac equation.

II. COVARIANT DIRAC EQUATION IN A NONSYM-
METRIC FIVE-DIMENSIONAL SPACE-TIME

One can proceed writing the ordinary Lorentz co-
variant Lagrangian in 5~space

Ly = ¥iyho, ¥ — 2, Yiyhy, @

where y# stands for the usual Dirac matrices, supple -
mented with 55

We use

ol el

5 -(OI> T = Py 0
Y= 110’ W—-IPYo

Note that L, is twice the usual Dirac Lagrangian. In
general relativity this is the Lagrangian which
couples with the gravitational field. See for instance
Ref. 4.

In order to make the action integral invariant under
the generalized transformations,a covariant deriva-
tive must be introduced in the form2~6

QY =Y, DY = hk“(‘p:p + %Aijpsij\p); (5)
where the 25 fields k,# are the contravariant com-
ponents of a "fiinfbein" system in five-dimensional
space the A/, are the local affine connections, and
Sij ['yz'y] (Except for obvious changes we use the
same notatlon as Ref.4.)

Since our goal is to have a well determined and con-
sistent set of equations for the Dirac field ¢/, we must
add to L, the free field Lagrangians corresponding

to the new fields #,} and AU which have been intro-

duced.

The free field Lagrangians must be scalars, and we
need the covariant field strengths to construct them.
These are deduced from the commutator of two co-
variant derivatives

(D, :Dk] = %Rijklsij ~ Ch®;, (6)
where
Ru‘kl =hph,Y (Aij“'y _Aij”1 _AikpAkju + AikuAkjp)’
(7)
Ci, = (hk”hl" __hluhku)(bi“_u + Aigvbgu)’ (8)

and b#, is the inverse of k,;# satisfying

bi ¥ =8,%,bihp = ot
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R4, and Ci,, are, respectively, the curvature and tor-
sion tensors expressed in the local system. Among
the many invariants which can be constructed from
these tensors, the contraction R = R#_; and the pro-
duct C = Cik,C k¥l stand as the mmplesi both being of
second order in the A% field variables. (Ci,, de-
composes generally in irreducible components.?,3
For the Dirac field it is completely antisymmetric.)

We thus naturally arrive at the Lagrangian
& =R + 1xC + kL)%, (9)

where 3¢ = [det (,*)]"}, x and k are cosmological
constants, and £, has to be expressed in terms of the
covariant derivative (5), that is,

L= YiykDY — (ﬂ)kw)iyk\}/. (10)

&£ is now invariant under generalized five-dimensional
Poincaré transformations. The whole set of equations
of motion implies variation with respect to the field
variables y, At ,Aif“ . These equations completely
define a solution for the ¥ and the other fields if ade-
quate boundary conditions are provided.

Variation with respect to ¥ gives the equation
iyED, Y = 0. (11)

Variation with respect to A"J'M gives

RyHCh —hpCRY — R FCR + I HC % = kR SRS
(12)
One gets, from (12),
1+ x)Cjp = kSs (13)
where S*,. is the spin tensor of the five-dimensional

Dirac f1efd and has the usual value
Sije = — %i’T’Yﬂ’j')’ku’ (14)

if i,4, %, are all different and is otherwise zero. Since
only the spin density contributes to C, .p» 1t 18 clear
that torsion appears in the space as a consequence of
the existence of matter. There are two contributions
to (13) related to the terms R and C in the total
Lagrangian. I these contributions happened to can-
cel each other, a peculiar situation arises, since the
Dirac field must vanish and the other fields remain
undetermined. How much space deviates from such
situation is measured by the parameter A = — (1 + X)-
It will be seen later that a plus sign for A is essential
for the existence of particlelike elementary excita-
tions with definite positive energy. Omission of the
torsion term in {9), corresponding to A = — 1, would
never make the self-interaction energy definite
positive.

If we define o0 = k/x, (13) can be rewritten
Cije = —0S 3. (15)

From (12) the A’J fields may be solved in terms of
the h,* and y. It 1s convenient to write them in the
form

A u (O)A, + (g

i iju?



ELEMENTARY

where
0) = Lpk - —
A = 2% (5 — €4 Cjki)l
3

¢ty = (RFRY —h#h" )bk

1] M,v ‘

and
(1)Aij“ = — éabkpSkij. (16)

The global affine connection has the form

Th,, = — b, (s, — Al h¥),

v iv'j

17

From (16) and (17) it is easily seen that OAW contri-

butes only to the symmetric part of I'*, , while
A ;ju contributes an unsymmetric part. It is pos-

sible however to eliminate the antisymmetric part of
I'¥,, by means of Weyl's trick,3 i.e., by expressing
(DA, in terms of the matter and the k,* fields. The
remaining I'*, are then symmetric and we fall into
an ordinary Riemannian space. The generalized Dirac
equation (11) picks up then a nonlinear spin-spin
interaction. This means that a theory which is linear
in the ¢ field when expressed in general affine space,
turns out to be nonlinear in ordinary Riemannian
space.

Microscopically there are no reasons to believe that
curvature of space substantially affects the properties
of elementary particles. We therefore introduce the
simplifying assumption that once the antisymmetric
part of the affine connection is eliminated at the
expense of linearity, the Minkowsky limit is adequate.

The equation we arrive to is then

iyho, W+ 30 W =0, (18)

which corresponds to a Lagrangian

L= L, + Losiits,,. (19)
We are still left with the third set of equations of
motion, coming from variation with respect to the
h,* fields. They may be written as

Gk, + 3x Uk = —kTk, (20)
where Gk“ is Einstein's tensor, Tk“ the energy momen-
tum tensor, and Uk“ is given as

5 [ CxdSx = [ UR 6h,»gedSx. (21)
As we see (20) differs by the term U* from the ordi-

nary Einstein equations. A further di#ference is that
Gk, and T*, are not symmetric.5

However this should not be a question of concern,
since Eq. (20) is written in a non-Riemannian space.
The same equation can be expressed in an ordinary
Riemannian space by eliminating the (1)A ;ju fields,
after what the U"p tensor no longer appears. It goes
over to the T*, tensor, which becomes symmetric,
and (20) takes then the form of Einstein's equations.

. LOWEST ENERGY SOLUTION OF THE MODEL

We now look for particlelike solutions of Eq.(18). In
the Minkowsky limit our universe is a five-dimen-
sional space subject to the condition —a < x5 < a.
We assume that nothing exists outside these bounda-
ries. It is then natural to impose
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3 =yy5 =0 for x5 = +a. (22)
Since jo is the component of the matter current per-
pendicular to the boundaries, this implies that no cur-

rent flows out of the Universe.

In order to solve Eq. (18) with condition (22), we start
neglecting the nonlinear term. In order to factorize
the solution as much as possible, it has been seen that
the simplest prescription which fulfills condition (22)
is as follows.

Let us take the spinors

Von = Vi, cos[@n + l)uwx5]§ (23)
Vp.n = Y11, Sin[(2n + Dpwx5]
wheren=0,1,2,---, uis a parameter, and
5o
= e—iw
lI/I,n € f <C0$9 > »
if,| .
el‘l’ s' 6
in (24)
P <cose >
. "\e#? sing
wII,n — e-twt(_ l)n 1
8 (o)
f, and g, are functions of » = (x2 + y2 + z2)1/2,
We now consider the combination
Vo =Von iV, (25)

and substitute ¢, in (18) neglecting for the moment
the nonlinear term. A short calculation leads to
simple expressions for f, and g, in terms of Bessel
functions. It is impossible, as should be expected, to
obtain simultaneously good behavior at the origin and
at infinity. Although the price that has to be paid is
rather high as regards numerical computation, the
introduction of nonlinearity provides solutions
(characterized by the number of nodes) which are
well behaved throughout and have a finite norm.

The rather special form (25) has been chosen so that
the combination

12 :E wn

verifies automatically the natural boundary condition
j9 = 0at x5 =+ a if we take pwa = n/4, In the Fou-
rier series (26), only odd arguments appear, each
term in the series being a combination of odd and
even harmonic functions of x5. The x5 derivative
acts on each of these functions so as to provide a
sort of mass term for the other,

(26)

When the nonlinear terms are considered, the picture
seems to get obscured since (18) is no longer sep-
arable in the same simple “term by term” way. For-
tunately, however, the complication amounts to a coup-
ling of the successive radial functions and can be over-
come. The x5 dependence also factorizes.

The sensible thing to do is to try for the actual ¢ the
same expansion (26). It is now convenient to introduce
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some changes in variables and functions in order to
do away with unessential constants.

If we choose
g, = (w/30)1/2[2(1 + p)|V/2G,,

fo = (w/30)Y/2[2(1 + p))1/2F,, (27)

p=w(l+ p)y,

a = wxd

and keep only the » = 0 term, the resulting equations
are

F’O + (Z/p)FO + VGO + GO(FOZ -G()z) = o’

28
Gy + Fo+ Fo(Fy2 —Gy2) =0, (28)

where v= (p —1)/(p + 1) and prime means {(d/dp).
Surprisingly enough, these are Eq. (12) of I.

In second order we find

Fo + 2/p)Fy + vGy + (Gy + G1)(Fy2 — G2
+ 2F,F; —2G,G,) = 0,

Gy + Fo+ (Fo+ Fy)(Fo2 —Gy2
+ 2F,F; —2G,G4) = 0,

Fy+(2/p)F; — (24 V)G + Gy(Fy2 — G2
+ 2FyF{ — 2G,G)+ G{(F{2 —G{2) =0,

Gy — (1+ 20)F, + Fo(F )2 — Go2 + 2F F; —2G4G,)
+ Fl(Flz - Glz) - 0.
(29)

We have obtained a numerical solution (without nodes)
for this system subject to the boundary condition
Fy,Go, F1,Gy, 0 as p » ., The solution is unique
for each value of v. The method is similar to the one
used in I. It turns out that the physically relevant
solutions (that is, those satisfying the above men-
tioned boundary conditions) tend very rapidly to ex-
ponentially decreasing solutions of the equation with

v =0.032
Go(0}= 0.655799
G.(0)=-0.097832

FIG. 1 Numerical solution of Eq.(18) including the first two terms of
expansion (26) and satisfying the physical boundary conditions. The
function F, is too small to appear in the drawing.
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no nonlinear term. Moreover, as should be expected,
F, and G, decrease much faster than F, G,.

In Fig.1 we show our results for the v value corres-
ponding to a minimum energy. The contribution of
the second wave is quite small. It gets comparatively
smaller for smaller values of v and somewhat larger
for larger values.

Of course a rigorous solution would entail evaluating
the contribution of the rest of the series (26). This
looks hopeless for such nonlinear equation. However,
the smallness of the second wave gives strong evi-
dence that for all practical purposes the first wave,
which describes the model proposed in I, gives a
satisfactory account of elementary spinorial excita-
tions in our model universe. (The existence of boun-
ded solutions can be proved by techniques derived
from fixed point theorems. However, for the practical
purpose of obtaining a spectrum of solutions corres-
ponding to zero nodes, or eventually one or several
nodes, we believe our method to be quite adequate.)

The energy can be expressed in first order as

E() =% (a2 /o)1 + »)[(Q1 — V), + 1],

where
00
I = fo (Fo2 + Gy2)p2dp,
® (F.2 2
Iy = {O (Fg2 — Gy2)2p2dp. (30)

The minimum value, which obtains for v = 0,032 is
E=%(a2/0)(13.72 + 1.26). (31)

The second wave gives a correction to the energy
smaller than 1%. Figure 1 shows that most of the
particle is concentrated in a sphere with radius

= 5, which by (27) corresponds to » = 5/w(l + p) =
2.5/w. On the other hand, the boundary conditions
for the x% dependence provide the relation: 2a =
n/2wy, that is,a ® 0. 7/w. From these relations one
might estimate the value of A if the rest energy of
the particles were experimentally known.

A model completely parallel to the one considered
above can be constructed if the sign of the Lagran-
gian £, for the matter field is reversed in(9). Since
for this model the sign of the conserved current

j* = —yYy*y is reversed, this suggests that the solu-
tions be considered as antiparticles of the former
ones. (See Ref.9.) The equations are in this case

iyhd, ¥ — fo@y N = 0. (32)
If one makes in our solution to (18) the changes

sin<> cos,

W <> —w,

g, <> 1rg,,
fo e (=) 1f

a solution to (32) is obtained having the same positive
energy as the former.

IV. FINAL COMMENTS AND CONCLUSIONS
We would like to stress that the model which has been
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explored above is remarkably simple and free of “ad
hoc” assumptions.

It might look artificial to postulate a five-dimensional
continuum, since space—time appears to be sufficient-
ly described with four dimensions. The reasons for
this initial postulate are not compelling but are rele-
vant from the point of view of simplicity. In fact we
have tried to eliminate the appearance of “ad hoc”
mass terms in the equations describing elementary
particles. These terms are disturbing, since it is not
clear what dynamical mechanisms should be at their
origin. No terms of this kind appear in the descrip-
tion of vibrations in solids which we took as a start-
ing analogy. We accordingly tried to do away with
mass terms and looked for more natural sources of
the rest energy. The study of vibrations in thin

films showed to us how a masslike behavior arises
when a narrow transverse dimension exists. This we
abstracted to be our x5. Moreover, perhaps the re-
mark can be made that a very simple model of closed
expanding universe is the shell of a five-dimensional
sphere. It is hard to understand that the width of the
shell should be exactly zero.

Our second assumption of generalized symmetry is
obviously much more general than invariance under
ordinary Poincaré transformations.

It seems quite appropriate not to impose a rigid met-
ric connection in space-time, independently of
whether matter is or is not present. This provides
the possibility that its structure can be twisted when
the kind of matter which is present possesses spin.
We have showed that if our particles were neutrinos
and the width of the universe were known, the constant
A might be determined. Since this constant measures
some sort of total twisting recovery strength of the
space-time continuum, our model probes in this

sense the geometrical properties of space—time. A
necessary condition is that A should be positive.

It has been known for quite a time4,5 that spin can be
defined as a dynamical property of classical fields.
There is a very close analogy between charge and
spin when one uses a gauge covariant formalism as
has been done in this paper. The introduction of the
fields A% in order to define a covariant derivative
exactly parallels the principle of “minimal electro-
magnetic interaction.” Here, however, because of
their different geometrical structure, not all fields
possess the same ‘“coupling constant”, or, in other
words, spin. Spinors have of course spin 3, and this

is the meaning of the % factor which appears in

Eq. (5).

Since we have a stable model which might describe
the structure of an elementary particle, the dynamical
definition of spin shows here all its relevance. Inde-
pendently of the existence of Hermitian operators
which in a nonlinear theory have no meaning, this par-
particle has spin 3 because of its geometrical nature
which is of course completely classical.

We conclude that in spite of its unrealistic simplicity
{(no weak, electromagnetic, or strong interactions have
been considered) the model shows that localized

stable excitations can exist in a certain rather reason-
able space-time. These classical particles would
have a highly nontrivial rest energy spectrum (de-
pending on the number of nodes of the wavefunctions),
and other properties such as definite spin and corres-
ponding antiparticles, usually considered typical quan-
tum mechanical features.
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Let D be the class of functions which are bounded by Cr~1*¢ and Cr=3=, § the class of potentials V (r) such that

V), rV'(r),and ¥2 V"(r) belong to D. & is dense in the class of potentials U with finite norm
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which almost all the results of potential scattering are derived. In this paper a complete solulionof the in-
verse scattering problem at fixed energy is given in a class § of potentials which contains §. This means that
given any set of phase shifts bounded by CI~17, we construct all the potentials of & which fit this set of phase
shifts. They depend on an arbitrary function. The fundamental tool in the solution is the “scattering structure
function.” The method is derived in such a way that an approximation theory and numerical computations are
feasible. These, together with various studies of the solutions, are the object of forthcoming papers.

1. INTRODUCTION

We study the elastic scattering of a particle obeying
the Schrodinger equation with a spherically symmet-
ric potential, at an energy E = 3 22/m, m being the
reduced mass and % the linear momentum. Our
“inverse problem” is the construction of the potential
from the phase shifts.

Being given a sequence 6(5 = {5,}) of phase shifts,
five questions are of interest. The two first ones are
the a priori questions of the problem:

(i) Does a potential V exist, which generates 6, at the
energy E, through the Schridinger equation? Such a
potential is called a solution of the inverse problem
at the energy E.
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(ii) Let us be given a class W of functions containing
a solution V of the inverse problem at the energy E.
1s V the unique solution in W ?

The answer to (i) is “in general” affirmative (“in
general” meaning unless 8 is an exceptional sequence,
fulfilling special constraints). We therefore are led
to the question:

(iii) Give a method for constructing a solution of the
problem,

The answer to (ii) is definitely negative if W is the
class—say ®—of all the potentials leading to physi-
cally acceptable phase shifts. Only in very special
subclasses of ® can the answer of B be positive.
This leads us to the two following questions, in which
we call “equivalent” two potentials yielding the same
sequence of phase shifts.

(iv) Give methods for constructing all the equivalent
potentials in ® or in a large enough, well defined, sub-
class of @.

(v) Give an appraisal of the deviation from each
other of all the equivalent potentials in @ or in a
large enough, well defined, subclass of ®.

In a more general framework, additional questions
would be for instance: Let § be given as a function of
E, what conditions must be fulfilled for which at
least one of the solutions is a static potential; and
how do you get it? Our present interest is however
strictly limited to the inverse problem at fixed
energy. It is, therefore, convenient to use the follow-
ing notations:

0o _y2( 2% 41 (1.1)
D,r =7 (57—2 + >, .
2
DY =72 ke +1— V(r)> , (1.2)
ar2
so that the /th partial-wave equation reads
DYy,tr) =11 + 1)Y,lr). (1.3

The partial wave is the solution of (1.3) which be-
haves at the origin like [»(I + 3)]'1(zm)1/2ris1
so that for V = 0, we get

)] v-0 = wr) = Gmr) Y2 Jyy,0). (1.4)
The phase shifts are defined through the asymptotic
behavior of ¥,(r):

Ylr) = A, sinlr — In/2—6) +o(1), ¥ —o.

(1.5)

A sufficient condition for the existence of the , is
that the following quantity is finite;

Wi = [ pie |v(p)ldp + [, |V(p)dp,

where a is a fixed length.l This condition defines a
set U of potential, in which |Vl is obviously a norm.
However, the set @ for which the §, are defined by

(1. 5) is much larger than U:® contains, for instance,
infinitely repulsive potentials.

(1.6)

Let us now summarize the approaches to the prob-
lem and our present knowledge of the question.

Roughly speaking, three kinds of formalisms have
been used in the literature dealing with this prob-
lem. In the first one,2—% it is assumed a priori that
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the potential to be obtained is such that the JWKB
approximation is valid for the phase shift. An addi-
tional assumption is more or less explicitly done,
such that there is only one turning point. Hence, it is
possible to define a function, say, H(A) from which
V{r) can straightforwardly be derived, at least for
large enough 7, and the phase shifts are given by

() = :0 S, S

e =i
Conversely, if § is known as a differentiable function of
l, the Abel transform (1.7) can be inversed and H(})
be obtained, then V() from H(\). The method can be
refined to include second order terms in JWKB
approximation.4>6 However, the only answer which
can be done by this way to our five fundamental ques-
tions is—“Here is a potential V(r) whose phase shifts
are approximately the required ones.” Although such
an answer can be sufficient for certain physical pur-
poses, we must observe that the inversion technique
is itself not very well defined, since it includes an
interpolation [from 6§, to 6( )}, whose definition has
been forgotten by most authors.2,3,5,6 Yet, the
Regge theorems, to be recalled below, show that the
choice of an interpolation of 6() is the key of ques-
tion (ii). Even for a rough application the method is
questionable, since a small imaginary part in the
potential leads to a dramatic situation as regards to
the errors.

H(\)dx. (1.7)

Due to Martin and Targonski,? the second way of
approaching the problem gives a positive answer to
(i) and (ii) for sets of phase shifts fulfilling some
special constraints, and potentials of the Yukawa
class. The method is not fitted to study questions
(iii)-(v). It is not fitted either to make generaliza-
tions, except for those that may be very weak.8

The third approach, by far the richest one, can be
considered as an extension to this problem of the
Gel'fand-Levitan formalism. In such a formalism,
being given two potentials V and W, one looks for a
“transformation kernel” K}¥ (, ') which generates
the wavefunction corresponding to W from the one
corresponding to V through the formulas

W) = i) — [ K 0,004 (p) p~2dp,

K¥or,7) =— 3 [ p[W(p) — V(p)]dp.

All the scattering problem reduces therefore to the
determination of K¥(r,r’). For this, it is convenient
to introduce an auxiliary tool f¥(r,7’), which is a
solution of the partial differential equation

(1.8)

(1.9

[py—DZ ) =0 | (1.10)
¥, 0) =fE©0,7)=0 |

and which enable one to obtain K J{r,7’) through what
we think right to call the Regge-Newton equation

K¥r,v') = f¥r,v") — [y K¥lr,p) f¥(p,7)p 2dp (1.11)

obtained by analogy with the Gel'fand-Levitan equa-
tion. Two kinds of studies have usedf{}’(r,r’) as a
fundamental concept. In the study developed by
Regge,® and more thoroughly by Loeffel, 10 V is
equal to one, and the class of potentials is V. Ques-
tions (iii)— (v) are neglected, but (ii) is studied
thoroughly. The function f¥(r,7’) is characterized by
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a set of numbers, the “spectral data” (y, {1,},{d,}),
which enable its construction through the expansion

f‘f[x7y] = (277)-1 f_::o ')/(T) (xy)i‘r+1/2d7-
+f) d, (xy)er1/2,  (1,12)
k=1

The series converges uniformly for (xr,y) in any com-
pact contained in R, XR,, Using this expansion, it has
been possible to prove the two following uniqueness
theorems19:

Theovem I: Let V; and V, be in U;let oy and o,
be the corresponding Jost functions, If

oy (1) = ay(0)

for Rel = — 3, then
Vir) = Vyr)

for almost all positive ».

Theorem II: Let's, = ¢**°! and let o(l) be the
interpolation of s, obtained through the Jost functions
{the socalled Regge interpolation). Let V4 and V, now
be in the class V. If the corresponding Regge inter-
polations ¢, and o, satisfy

0, () = 0,0)

for all / with Re! > — 3, where both are holomorphic,
then

V,0r) = V,0r)

for almost all positive 7.

The problem of uniqueness reduces therefore to the
step s, = o(l). At this point, there can be uniqueness
only for particular classes of potentials, allowing the
interpolation to be unique. This is the case, for in-
stance, if Carlson’s theorem applies (Yukawa clas-
ses - - -) or if the Lagrange—Valiron theorem applies
(several classes studied by the author!l), If a sub-
class of U is chosen such that the solution is unique
or if Regge interpolations are known, questions (i)
and (iii) can be answered positively in certain
cases.10,12 However, attempts to answer questions
(iv) and (v) through this formalism are lacking and
the stability of a method using an interpolation pro-
cess as an intermediate step is highly questionable,13

In the study initiated by Newton,14 the function
J&r,7’) is given by the series

[ee]

I, r') = 120 qur)u. (r'). (1.13)
which is obviously a solution of (1.10). Hence
KJ'(r,v’) has the expansion

oo
KF@r,v') = ;Eo VT Oyui'). (1.14)

Inserting this expansion in (1. 11) and going to infinity
yield a infinite system of linear equations relating
the 5, and the ¢}, so that solving question (iii) reduces
to inverting some infinite matrices. A formal solu-
tion of the inverse problem is therefore obtained in a
very elegant way. It remains however, for solving
(iii), to give explicitly the inverse matrices for solving
(1) and (ii), to prove that physically acceptable poten-
tials are obtained from a physically acceptable set

of phase shifts. This has been done, 15 starting from
a sequence & = { 6,f of phase shifts such that

ls,l <c@ +1y3e (1.15)

and obtaining, for almost every sequence of this class,
a one-parameter family of potentials such that
= ao + O(l_z)

Cop

U 15w, (1.16)

Copeq =0y + O(12)

Unless a, = a4, these potentials behave asymptoti-

cally like C»"3/2 gin(2r + @), whereas for q, = a;,
they decrease faster than Cr~2*¢, This is the case
for one and only one value of the arbitrary parame-~
ter in the family corresponding to a sequence 0. We
can therefore assert the following: Let CJ be the
class of potentials whose transformation kernel is of
the form (1.14) and the ¢, fulfill (1.16), and €, the
subclass with @, = ;. In €%, the answer to (i) and
(iii) is affirmative. This holds for (ii) in €, only.
The uniqueness, or almost uniqueness, encountered

in these cases, corresponds to very special proper-
ties of the potentials.16 The method is easy to ex-
tend by allowing / in (1. 13) to take noninteger
valuesl7 and, possibly, complex values.18 However,
the limitations of such a method, for whatever genera-
lization, comes from the convergence conditions when
going to the asymptotic limit of the linear system,
which is equivalent to (1.11), A necessary condition
for this is that the|c,| be bounded by C(Rew)1/3, But
this simple bound considerably limit the class—say C—
which can be attained by all these methods. A study
of the Jost functions shows that expansions are then
valid, comparable to certain dispersion formulas,9
and in which the ¢, appears as interpolation coeffi-
cients.!! In the series giving asymptotic quantities,
the apparent rate of convergence is that of the series
l¢,|. Modifications of the method2® enable one to
increase this rate of convergence. Actually, since the
limit @, of ¢; as ! = © is proportional??! to

fooo pV{p)dp, it is, in our opinion, more interesting to
calculate exactly the contribution of this term and
make manipulations on series including (¢, — a,).22,23

Extensions of the Gel'fand-Levitan formalism to in-
clude Coulombian potentials,2?4 relativistic cases,25
spin orbit potential26 and tensor forces27 are also
available, but in a less advanced state.

In the following, we characterize the two ways of
treating f (v,7') as the spectral data approach and the
interpolation coefficients approach. Facing the im-
pressive list of results obtained through these meth-
ods, we are nevertheless disappointed for the follow-
ing reasons:

(a) There is no method as yet available to answer
questions (i)- (iii) in a class of potentials defined
through simple properties of the potentials.

(b) There is no attempt made to solve question (iv).

(e¢) The main effect of the only preliminary attempt28
to answer question (v) has been to convince the
author that representations of f(r,7’) with interpola-
tion coefficient are very particular, and a represen-
tation through the Fourier transform of f{r,r) would
be much more fruitful.

These remarks have led the author to undertake a
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study which is now in course of publication, and whose
two other parts have already been issued.23,29,30
The remarks which have led us to our method are the
following.

(d) KY(r,7) is a solution of the partial differential
equation [we use in the following the simplified nota-
tion K(r,7r")],
(DY — DO )Klr,7') = 0 )
Kr,00 =K (0,') =0 \
”
K(r,r) =— 37 [, pV(p)dp

Conversely, straightforward techniques®4,31 ghow
that the solution of (1.17) is the transformation ker-
nel corresponding to V{p), so that (1. 8) holds. The
only important operator is therefore K(r,r’),f@r,7r’)
being at most an auxiliary tool.

1.17)

(e} In K(r,r') the only important part for our
problem is its asymptotic behavior for large 7.

(f) Iff(r,r’) is used as an auxiliary tool, the Fourier
transform of f(r,7) yields probably its most conven-
ient characterization.

(g) Almost all the results in potential scattering
being valid only in U (or in subclasses of V), results
valid in O or in a subclass of O large enough, and
dense in U with respect to the norm (1. 6), can be con-
sidered a sufficient generality. Following these re-
marks, we have obtained in a previous paper,29 here-
after referred to as I, the following resulis:

Let &# be the class of continuous functions V(r) such
that, for x = 0,

lrivir)l = Ccl/a) |

lr2ever)l < Cla/r)e ,5
and let & be equal to &, 8 be the_subclass of & such
that rV'(r) and ¥2V"(r) belong to &, Let V belong to
8 ,,; the differential equation (1.17) has a solution,

thoroughly studied in 1. For V € § it can be put in
the form

(1.18)

K(r,r') = cosrk(r’) + simk(r') + PW(r, »') {
2 K@,r') = — sinvk@’) + cosrk @’) + QM,r’) ,5
or (1.19)

where PW) (¥, #’) and @ M (r,r’) are “negligible func-
tions” viz functions such that

@) P, 77) =0, L. 1. 20)
(b) fo [Py My'-1(1 + )10, v > )

Y —

Let us now insert (1.19) into (1. 8). (Recall that, in
the following, we definitely substitute the couple (0, V)
to the couple (V, W) used at the beginning of this sec-
tion and drop the indices whenever they are not neces-
sary.) By going to the asymptotic limit, we obtain the
remarkable formula

Jo %plu,(p)pldp = exp(- in/2)[1— A, exp(i5,)],
where (.21
K(p) = p~iE(p) + ik(p)]. (1.22)

We have furthermore proved in 129 that the data of
X (p) enable one to construct K{r,»’) and therefore
V(r). (p),K(r,r"),and V(r) are therefore equiva-
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lent quantities from the information point of view,
and the scattering problems are completely describ-
ed by the formula (1. 21). So as to label the impor-
tance of ¥(p) for the scattering problems, we have
called it the “scattering structure function.” The in-
verse problem formally reduces to the determination
of the “scattering structure function” from the

phase shifts. A direct determination, starting from
(1.21), will be studied as a generalized moment prob-
lem in a forthcoming paper, of a more mathematical
character. In the present one, we still use f{r,7’) as
an auxiliary tool; but its importance is essentially
that of a gadget for obtaining the s.s.functions.

In the present paper, we describe a method of solu-
tion of the inverse problem which answers the ques~
tions (i)- (v} in a class of potentials dense in U. This
method is described in Secs. 2 and 3 below. In Sec. 2,
we first thoroughly study the properties of K(r,r’)
and f(r,r’) for potentials of class &, particularly
their asymptotic behavior, which can be expressed
for both functions by formulas similar to (1.19), A
fundamental equation is given, which relates the s.s.
function and f(r,7’). We then look for a characteriza-
tion of f&r,v’). flr,r’) can be characterized as a solu-
tion of (1.10); but it can also be characterized by an
integral representation in which the key function is

a Fourier transform of f(+,»’). We therefore study
the properties of this Fourier transform for poten-
tial of & and, in view of obtaining the c,, the proper-
ties of the function obtained by truncating the Fourier
spectrum of f(r, 7). Section 2 contains finally the
working program of a solution of the inverse prob-
lem. This working program is achieved in Sec. 3,
where a complete solution of the problem is given and
its answers to questions (i) (iv) are clearly stated.
As for question (v), it will be studied apart in a forth-
coming paper.32

In a forthcoming paper, the properties of the solu-
tions here obtained will be fully investigated. In par-
ticular, the trace method will be applied to the solu~
tions, so as to obtain results corresponding to those
obtained in the other inverse problem of quantum
mechanics.33 Alternate methods of constructing solu-
tions will also be given. In one of them, like in the
Newton's method and its generalizations, the main
figures will be the interpolation coefficients. Although
this method can be considered as the largest possible
extension of studies of this kind, it presents the same
defects, viz the potentials are defined by special pro-
perties of the ¢; and not by simple mathematical pro-
perties.

2. PROPERTIES OF K(r,+') AND f(r,r')
A. Properties of K(r,7')

The properties of K(r,7’) have been thoroughly studi-
ed in our previous paper (I) for potentials of class §.
Many of them, actually,hold for potentials of larger
classes. We only give here a few results, necessary
for understanding the following.34 Let us first intro-
duce the notations

K ,r,v')=K@,r') — Kolr,r"), (2.1)
where rrU2
rr
Kobr,r') =—54v")V/2 fo

x vfo{(r - 7’)<1 ~%§> 1/2} pV(p)dp (2.2)
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and
Kyr,v)=K,v') — K§lr,v'), (2.3)
where L
KQr,r') = (2n) 1 V, fo Gur,r' ,u)u2du, (2.4)
Vo= Jo pV(pMp, (2.5)

Glr,r',u) = cos((r — v')2 + 4rr'u2)¥/2] — cosltr — r’).

(2.6)
KQ(r,r’) can also be given the remarkable form
KQr,v') = — (m)1 Vo[uo(r)uo(r’)
+ 212—;1 ul('r)ul(r’)]. 2.7)

The interest of the separation (2.1) comes both from
the fact that the symmetric function K(r,7’) is that
part of K(r,r’) which is linear in V, and from the fact
that remarkable bounds and integral expressions are
valid for K,(r,7’), for instance,

Kl(r,r’) = (4r2y1[K{r,7))2 sin(r - 7')

!

+ [ sing’ ~ 0)@tr,p)p2dp,  (2.8)

K tr,v') =— ("2 [K(r',7")]2 sinlr’ —7)
+ [, sintr — p)S(p, 7" p~2dp, (2.9)

where Q(r,7’) and S{v,r’) are continuous on R* X R*,
and absolutely bounded by

Clrr')ve2 (W')(he)/z[l + (W')(1+e)/2]-1_ (2.10)

Bounds and integral expressions have also been
obtained for

K§tr,v') =Kyr,r") — KJ(r,r'). (2.11)

Although all these results are to be used in Appendix
A, we do not state them here more completely, but
only give some features of the asymptotic behavior of
K(r,v'), using, for the various quantities, indices which
refer to that part of X(,r’) they refer to. Compo-
nents of the s.s.function are proved to be given by the
following formulas, where X(r) is equal to [k(»)7 +
iklr)r1:
Kolr) = — (2mr)1/2

o0 . .

x Jo exp[— itr + $p2/r) + in/4]pV(p)dp,

’ (2.12)

Ry ) =71} @r2y 1K, 7))2 exp(- ir)

+ 1,7 exp(- ip)S(p,V)p'zdp}, (2.13)
K, 6) = vy /2 [ urazau [
x exp[— zi(p2u/r +ur +v/u) + in/4]
X V{p)K(p, pu)dp, (2.14)
K8(r) = — 171V, [y exp[— ir cosd] cos(8/2)d6. (2.15)

X, (r) is29 a bounded continuous function on R* going
to zero like v~1 as v goes to ©, whereas X3(r) asymp-
totically behaves like

K3w) = — @ur)y Y2y, expl— ir + in/4) + 0(r~1).(2.16)

Besides, we have obtained in (I) several bounds for
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the remainders coming in when K{r,7’) approaches
its asymptotic behavior. If we write again (1.19) as

.0 .y .
<1 — 287> K,v') =— r'K{r') expliv) + R(r,»"),
(2.17)
the components of ®(,7’) are bounded by

l®Q@r,7")| = Cr'ly —v'|-12 (2.18)

I® (7, 77|

for »' = 37,
(2.19)
(2.20)

{C
N Cr'/r + Cy'2/r + Cr' (v’ /r)¢/2

|® r,7)] = Cr[1 + (ry7)V/2)1,

Other bounds are given in the Appendix A. It is con-
venient to call the first term of an expansion like
(2.17) the structural term, the other one,the remain-
der and the whole,a structural expansion.

In our previous paper (I),we did not give the asymp-
totic behaviour of K(r,7’) for fixed 7,large 7', This
however,is very easy to obtain, since KO(Y,V’) is
symmetric, whereas K, (v,7’) is given as well by (2.9)
{which was used in I) and by (2. 8), which can be used
in the same way for the present purpose. The results
are given in the following formulas, where we use the
primes for denoting the quantities related to this type
of asymptotic behavior:

Kir) = Kolr), (2.21)

Ky = — (@3 LK (r,7)]2 exp(— i7)

— i1 f:’ exp(— ip)Q(r,p)p~2dp. (2.22)
Besides, the bounds of the various components of
{®’(r,r")| are similar to those of | R(»’, 7).
B. Properties of f(v,7’)

We study f (7,7’) for a potential of class §. Actually
most of the formulas given below are valid for a
potential of &,,,in particular, formulas (2.23), (2. 24),
and (2.25). f(v,7’) can be related to K(v,7’) through
the formula35

fr,v) =K, v + fo’ K(t,")K(r, vVt~ 2d7.  (2.23)

It is easy to obtain another formula for f(r,»’) by
solving (1. 10) through Riemann's method, following
the work we have done in I for K(»,7'). The result3é
is

f(?’,rf) :f[(w,/)ﬂz’ (W,f)1/z] _ (m,,)l/zfo(w,)l/z

a 2 | p2
X p 1f(p,p)*<70t(7 —7) (1 - ——)W}ip, (2.24)
op ry'
which can also be written37 as
’ , CGrr N1/
fr,r) = — F e 12 [ O

¥ Jollr — )1 — p2/rr' )1 /2)pw(p)dp, (2.25)
where

wir) = — 21 L i ), (2. 26)
dr
Comparison of (2.2) and (2.24) (as well as a direct
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verification) shows that K 0(1' r') is a solution of
(1.10) and that f(»,7’) is related to w(r) like Ky(r,7")
to V(r). Formulas (2. 24) and (2. 25) yield the contmu-
ation of f(r,r) in R* X R* consistent with the partial
differential equation (1.10). The continuation of
K(r,7) in this way is K (r,7’). We can also say that
(2.24) gives a chamctewzatzon of f(r,r’) by the func-
tion f(r,7), this meaning that the data of f(r,7) is
sufficient for constructing the solution f(7,7’) of
(1.10), which for » = ¥’ is equal to f(»,7). Such a
characterization is convenient for a complete study of
the problem,and we shall give, here and there, some
remarks which enable the interested reader to easily
do it. However, it is (slightly) more convenient to
characterize also f(r,7’) by a Fourier transform of

flr,7).

C. Characterization of f(r,7’) by a Fourier Trans-
form

Let us first study K,(r,7’). ‘From the results of I, we
can write

Kolr,r") = f0°°c r,v" ,u)® (u)du, (2.27)

where G(r,7’,u) is given by (2.6) and &(u) is given by

() = (27) 1V 2y (1 — u) + &4 (u) (2.28)
where y is the step function, and &/ (u) is locally in-
tegrable on R*,going to zero like Cu 3-¢ ag u goes to
© (this for a potentlal of class &). The first term in
(2.28) is responsible for the fact that r 1K (v, 7)(=
r~1K(r,7)] goes to the constant — 3V, as v goes to o,
From (2 27T) we have also derived the formula for the
s.s.function: w©
Ko(r) = irt exp(— ir)f [exp(2iru2) — 10’ (u)du.
0 (2.29)

From (2.28),we easily derive the formula

Kyr,v’) = 4rr'f0°°W‘1 sinwu®u)du, (2.30)
where
=[r —r)2 + drru2)t/z (2.31)
) =— [Tt = — (21 Wo{ut — 1)
X 'y(t —u) + d)l(u). (232)
For r =7’,(2.30) reduces to
K (r,7) = 2f0°° sin(2ru) ®(u)du. (2.33)

We would like to extend these results to f(r,7’). Let
us consider the function

for,n)=flr,7) (2.349)
From (2.23) it is easy to prove (Appendix A) that
r~1f(r,r) is a bounded continuous function, going to
zero faster than Cr 1llogr as r goes to «,and there-
fore belongs to L,(0,x). We therefore can define in

L ,(0,%) a function ®,(u) such that this integral con-

verges in the mean 1.i.m.):

— K(r,7).

y1f(r,r) =2 l.i.m. fow sin(27u)®, (u)du. (2.35)

The continuation f(r,7’) of f(r,¥) which fits (1.10)
clearly is f(r,v’) — Ko(r,r’). Let us consider the
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formula (2. 24) for it,and use the Parseval theorem
and (2.35). We obtain, through well-known formulas 38
that

flr,7")=4rr' Lim. f0°° w(sinwud, (u)du. (2.36)

Comparison with (2. 30) shows that, if » 1f(r, r) is
given by its Fourier transform

riflr,v) = 2/ sin(2ru)Flu)du, (2.37)
the following formula defines a continuation which is
consistent with (1.10):

flr,v") = drv’ fooow‘l sinw) u F(u)du. (2.38)
Besides, it is easy to prove on (2. 38) that, provided
convergence conditions are fulfilled, (2. 38) is a solu-
tion of (1.10) reducing to (2.37) as 7’ goes to 7. In
those conditions, which certainly hold for potentials
of classes larger than §,(2.23) and (2. 38) are there-
fore equivalent continuations of f(r,r). This equiva-
lence between the two characterizations of f(r,v’)
either through f(v,7) or through the Fourier trans-
form, cannot be overemphasized. They are also
equivalent (for equivalent classes of potentials) with
the “Loeffel” characterization by spectral data. In
contrast, the coefficients ¢, can be used only,as we
see below, when f(r,7) has a truncated Fourier spec-
trum. Actually,this remark explains why,in a paper
which want to be as comprehensive as possible, we
like better the characterization by the Fourier trans-
form: The coefficients ¢, will appear there in a most
natural way. The price to be paid is the supplement-
ary assumptions of differentiability of the potentials—
assumptions which can be suppressed for most re-
sults,as we have seen in I,Sec. 7.

D. Asymptotic Behavior of f(r, ')

We already know the asymptotic behavior of the first
term in the right-hand side of (2.23). For a study of
the second term, it is convenient to insert

K(7,7) (2.39)
into

for[K(T,T)K(T, rr2dr.

=KQJ(7,7) + K}(r,7) + K (7,7)

(2.40)

Then we write down the asymptotic behavior of every
term as given by formulas of the form (2.17). It is
proved in Appendix A that all the remainders are
“negligible” functions, so that we obtain in this way,

=i Z,r) == 750 explin) + 70,7,
v

2.41
where T(»,7’) is a “negligible function”; F(»’) ar(xd !
T'(r,7r’) are related to X(r’) and K(»,7’) by

Fr1) = X0') + [ TR (D)K(r,r)dr, (2.42)
Kr,r) =(rr' YK (r, v, (2.43)
Tr,v) = Rr,r') + form'(T,’i’)K(T,’V')T'sz
+ i exp(z'r)f:o.’K’(T)K(T,r’) T ldr
— ir2K(r,r)K(r,r’). (2. 44)
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Furthermore, we prove in Appendix A that,for any
positive ¢,

[F(p) — Klp) | < C(1 + pe )1 + p) L. (2.45)
It is convenient to label two terms in F(»’) like we did
for X({r’):

Fr') = §(r') + F,0r"), (2.46)

where §(r’) is nothing but X8(r).

E. Asymptotic Fundamental Equation

We are now in position for deriving the asymptotic
form of the Regge—~Newton equation:

K, r') = Fr,r) — fo’sc(r,p)sy(p,w)dp, (2.47)
where we have used, for convenience, the notations
(2.3) and

Fr,r) = (rr' )y if(r,r). (2.48)
Replacing K(r,r’) and f (v,7’) by their expansions
(2.17) and (2.14),and letting v go to infinity in (2.47),
we easily check that the contribution of the negligible
functions vanishes and we obtain

K(r) = 50~ [ Kp)Flp, 7)dp, (2.49)
which supersedes the Regge—~Newton equation (2.47)
in all the situations where only the behavior for large
¥ comes in. This equation is therefore most conveni~
ent for scattering studies. One must notice that (2.49)
contains exactly as much information as (2,47), since
it follows from the analysis done in I (Sec.7) that
X{r,r’) canbe derivedfrom X(r”). Besides,the same
device can be used for deriving F(v,#’) from F(»).
Actually, if we write

for, vy = flor, vy —KQ(r,r"), (2.50)

it is clear that the s.s.function corresponding to
folr,v') is §,(r").
Now, since fz(r,r’) is a solution of the partial differ-

ential equation (1.10), just like K(»,7’) which we have
studied in I, we can readily write, following [I, (1. 26)],

folr,v) = (217)‘1’2(77’)1"2me [f5(p) sinlo(p)) — fylp)

x cos(@p)]p~3/2dp,.  (2.51)

where

olp) = splrr'/p2 +v/r' +v'/r) + /4. (2.52)
The formulas (2.42) and (2. 49), together with the
formulas relating X (7, ') to X(#") and F(r,7") to F(r')
prove that the information contained in F(») and that
in X(») are equivalent, and are also equivalent with
that contained in §(v,r’) or X(v,7’). This holds pro-
vided that the integral equations there involved has a
unique solution.

F. Further Characterization of f(r,7’)

Formula (2. 49) canbe used to construct s. s. functions
from the knowledge of F(r,v’). F(v,7r’) can be con-
structed either from F(4 through (2. 38) or from
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flr,7) through (2.24). Actually,the knowledge of &(x)
and f (r,7) or ®u«) and &,(u) are sufficient for a
characterization of f(v,7’). If we allow »~1f(r,7) or
& ,(u) to be any function of L,(0,%),we obtain a class
of functions Hr,r’), say, &, which contains the class
associated with the class of potentials §. However,

¥ is much too large for our purpose, and not con-
venient for our foregoing derivations, We therefore
try to get more precise limitations on w(¥) and &,(u)
for a potential of class §. From (2.23) and (2. 26),we
obtain

w(r) = Vir) + 2073 [7[K(p,7)]2p"2dp — 2r-4{K (r,7)]2

—art KoL Koo (259
¥

For a potential in &, we know that |K(p,7)!is bounded

by Clov)1*€/2 whereas|(3/6v)K(p,7)!|is bounded by
Cp. Hence,if we introduce w, () equal to w(r) — V(r),
l wl(r)l = Cre(l + ve), (2.54)
The asymptotic hehavior of w(7) is derived in Appen-

dix A,together with a careful appraisal of the re-
mainder. The result is

lw, () + 472[a cos(2r) + g sin(2r)]| < Cr3+¢

where (2.55)
a= [ koY (o)p 2dp, (2.56)
= 2 [71lF (0)2 = [£"(0)]2} p-2dp. (2.57)

From (2.54) and (2. 55), we see that rw(r) is a func-
tionof L,(0, «). Letus define its cosine Fourier trans-
form ud,(u):

ur_bz(u) = — (7)1 I.i.m'.f;o cos(2ru)rw, (Ndr, (2.58)
which is equivalent to

d . - . =

™ [» 1 (r,7)] = 4 Lim, f;o cos(2ru)o(u)udu.  (2.59)

Let us now introduce
A(r) = 4 Ha cos2ry(r — a) + B sin27y(r — b)], (2.60)

where y is the Heaviside step function,a and & are
conveniently chosen positive numbers. Clearly,

fro,(r) + A@)| < Cr2+¢, (2.61)

Let A{u) the cosine Fourier transform of A(r) be

Aw) = [ cos(2ru)A(r)dr. (2.62)
After one integration by parts, we obtain for A(u) the
following bound:

AW <c@ + 11 —ul)y 11+ 1ogll—ul).  (2.63)
From (2.58), it follows that u®,(u) is a function of
L,(0w}). From (2,55) and (2.63), it follows that this
function is continuous on R*, except for a logarithmic
singularity for # = 1. Let now B(r) be the function

B(r) = fr"“ Alp)dp. (2.64)
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B(r) is a bounded function, which, for » going to in-
finity, goes to zero like

B{rY = 2v 1 (8 cos2v —a sin2r)

+ 72(a cos2r — B sin2¥) + 0(r 3},  (2.65)
Let us now analyze (2.58). The value of the right-
hand side is the limit, with respect to the norm in
L2(0,), of

d = ﬂ“lfOM cos(2ruyrw, (r)dr.

u (2.66)

Let us integrate (2.66) by parts. Since v 1f (v, 7) goes
to zero as ¥ goes to zero and to o, we can write

rfr, ) =~ Blr) + [T ow; o) + Alp)ldp (2.67)
and, therefore,

Fy=~ (M7 (M, M) + 207 Y [Msin(2r) 3 (r, v)dr.
(2.68)

It is easy to see that <—I3M is a sequence convergent in
L2(0,) as M goes to ©. Its limit is equal to

Byw) = 2r ! Lim. [“sin(2ru)r=t Flr,v)dr. (2.69)

From (2.69) and (2. 35),it follows that ®,(x) and &, (u)
are equal almost everywhere. The function &,(u)
which characterizes f(r,7’) through (2.35) has there-
fore, if the potential belongs to §,the following pro-
perties:

(a) &,(u) belongs to L,(0,);
(b) <I>2(u) is almost everywhere continuous;

{c) usz(u) belongs to L,(0,%),and is continuous for
any u but u = 1.

Since @, (x)} shows also those properties, s0 does

W) =& @) + By(u) = Flu) + (20) 1 Vglut — Dp(l — )
(2.70)

The set ¥ of functions f(»,7’) characterized by giving
a number VO and a function ¢ () contains the set of
functions f (r,7’) corresponding to potentials of &.

% is narrower than ¥, and exhibits an interesting
property: It is easy to study “truncated Fourier
spectrum” approximations in ¥, viz.the functions
obtained from a given element of & by restricting
F(u) to a finite interval.

G. Projected Functions

Among the approximations described above,a parti-
cularly important one is obtained by restricting F(u)
to [0.1]. We call it the projection of f{r,7’). It yields
two projected functions: the internal projection, whose
spectrum is confined to [0,1],and the external pro-
jection, whose spectrum is confined to (1,«). Their
sum is f{r,7'). Now,f(r,7"),according to (2.25), can
be written as the sum of two terms, corresponding to
two parts of w(r) [given in (2.53)]. The first term
Ky(7,7’) corresponds to V{r). The second one, which
we label f, (v,7"), corresponds to the other terms in
(2.53):

flr, vy =Kyr,v") + f(r, 7). (2.71)
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After a glance at the results of Paper I, recalled in
Appendix A, we see that the interval projection
Ki(r,7") of Ky(r,7’) is readily obtained by substracting
®,(u) from &’(«) in (2. 27), and adding to the function
obtained in this way a quantity of the form y sin» sinr’,
so as to balance the integration by parts [for more
details, see formula (2. 92) below]. Therefore,Ki(r,7")
has a structural expansion and so does the external
projection K§&(r, 7’). Furthermore, the structure func-
tion X §(p) is a continuous function on R, going to
zero like p~1 as p goes to infinity.

Using now a well-known formula, 39 we obtain from
{2.25) the following formula for f,(v,+'):

filv,ry = =27 17’7”fO°°pw1(p)dp

X fow w i sinw cos(2pu)du, (2.72)

so that the internal projection f#{(r,7’) is given by

Hr,r) = — Zn'lrr’f: Pwl(p)dpfol w1 sinw cos(2pu)du.
(2.73)

It follows from the_definitions of w, () and (2.72) that
fi(r,7) is equal to f (r, 7). We prove in Appendix A
that it is possible to define a and b in (2. 60) in such

a way that B(0) be equal to zero. Let us do this choice
and set

b

f(?’,T) :flo(yyy) + fl 1(1/17)
with
il ) =—vB(r).

(2.74)
(2.75)

Hence, (d/dr)r-1f 4 (7, 7) is equal to A(¥), and therefore
vanishes as 7 goes to zero. Let us now successively
study the contributions of /| ,(¥,7) and f, (r,7) to
(2.73). For the first one,integrating by parts yields

4ty [ 7V oo, p)p f 1wt sinw sin(2puyudu.
(2.76)

It is easy to see that a permutation of the integrations
is possible. The function fo “B(p) sin(2pu)dp, which
appears by the way, can be split into two parts:

~[T'AB(p) sin{2pu)dp, 2.7

which enables us a second integration by parts, obtain-
ing
2ﬂ'1(sim' sinr'waB(p) sin{2p)dp

+ fol{cosw-— cosly — 1")]dufoA Blp)p cos(2pu)dp).
(2.178)

For the second one, we calculate directly fAOOB(p)
sin2pudp and its first derivative with respect to p.
It follows readily 